These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26450311)

  • 1. Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 μm atmospheric window.
    Ventrillard I; Romanini D; Mondelain D; Campargue A
    J Chem Phys; 2015 Oct; 143(13):134304. PubMed ID: 26450311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 μm.
    Mondelain D; Vasilchenko S; Čermák P; Kassi S; Campargue A
    Phys Chem Chem Phys; 2015 Jul; 17(27):17762-70. PubMed ID: 26084382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared water vapor continuum absorption at atmospheric temperatures.
    Cormier JG; Hodges JT; Drummond JR
    J Chem Phys; 2005 Mar; 122(11):114309. PubMed ID: 15836217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm(-1).
    Montgomery GP
    Appl Opt; 1978 Aug; 17(15):2299-303. PubMed ID: 20203777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The water vapour self- and water-nitrogen continuum absorption in the 1000 and 2500 cm(-1) atmospheric windows.
    Baranov YI; Lafferty WJ
    Philos Trans A Math Phys Eng Sci; 2012 Jun; 370(1968):2578-89. PubMed ID: 22547233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements.
    Ptashnik IV; McPheat RA; Shine KP; Smith KM; Williams RG
    Philos Trans A Math Phys Eng Sci; 2012 Jun; 370(1968):2557-77. PubMed ID: 22547232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 1.28 μm transparency window of methane (7541-7919 cm⁻¹): empirical line lists and temperature dependence (80 K-300 K).
    Mondelain D; Kassi S; Wang L; Campargue A
    Phys Chem Chem Phys; 2011 May; 13(17):7985-96. PubMed ID: 21437294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. II. Dimers and collision-induced absorption.
    Leforestier C; Tipping RH; Ma Q
    J Chem Phys; 2010 Apr; 132(16):164302. PubMed ID: 20441270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. I. Far wings of allowed lines.
    Ma Q; Tipping RH; Leforestier C
    J Chem Phys; 2008 Mar; 128(12):124313. PubMed ID: 18376925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and recent evaluation of the MT_CKD model of continuum absorption.
    Mlawer EJ; Payne VH; Moncet JL; Delamere JS; Alvarado MJ; Tobin DC
    Philos Trans A Math Phys Eng Sci; 2012 Jun; 370(1968):2520-56. PubMed ID: 22547231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infrared collision-induced absorption by N(2) near 4.3 μm for atmospheric applications: measurements and empirical modeling.
    Lafferty WJ; Solodov AM; Weber A; Olson WB; Hartmann JM
    Appl Opt; 1996 Oct; 35(30):5911-7. PubMed ID: 21127602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure dependence of the water vapor continuum absorption in the 3.5-4.0-microm region.
    Watkins WR; White KO; Bower LR; Sojka BZ
    Appl Opt; 1979 Apr; 18(8):1149-60. PubMed ID: 20208901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infrared continuum water vapor absorption coefficients derived from satellite data.
    Barton IJ
    Appl Opt; 1991 Jul; 30(21):2929-34. PubMed ID: 20706335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water vapor absorption coefficients in the 8-13-microm spectral region: a critical review.
    Grant WB
    Appl Opt; 1990 Feb; 29(4):451-62. PubMed ID: 20556130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Airborne and satellite remote sensing of the mid-infrared water vapour continuum.
    Newman SM; Green PD; Ptashnik IV; Gardiner TD; Coleman MD; McPheat RA; Smith KM
    Philos Trans A Math Phys Eng Sci; 2012 Jun; 370(1968):2611-36. PubMed ID: 22547235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retrieval of foreign-broadened water vapor continuum coefficients from emitted spectral radiance in the H2O rotational band from 240 to 590 cm(-1).
    Serio C; Masiello G; Esposito F; Di Girolamo P; Di Iorio T; Palchetti L; Bianchini G; Muscari G; Pavese G; Rizzi R; Carli B; Cuomo V
    Opt Express; 2008 Sep; 16(20):15816-33. PubMed ID: 18825219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonator spectrometer for precise broadband investigations of atmospheric absorption in discrete lines and water vapor related continuum in millimeter wave range.
    Tretyakov MY; Krupnov AF; Koshelev MA; Makarov DS; Serov EA; Parshin VV
    Rev Sci Instrum; 2009 Sep; 80(9):093106. PubMed ID: 19791931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atmospheric water vapor absorption at 1.3 microm.
    Bragg SL; Kelley JD
    Appl Opt; 1987 Feb; 26(3):506-13. PubMed ID: 20454163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared continuum absorption by atmospheric water vapor in the 8-12-microm window.
    Roberts RE; Selby JE; Biberman LM
    Appl Opt; 1976 Sep; 15(9):2085-90. PubMed ID: 20165342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the FASCODE model and its H(2)O continuum based on long-path atmospheric transmission measurements in the 4.5-11.5-µm region.
    Thériault JM; Roney PL; -Germain DS; Revercomb HE; Knuteson RO; Smith WL
    Appl Opt; 1994 Jan; 33(3):323-33. PubMed ID: 20862021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.