These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 26450343)

  • 1. Roughness based perceptual analysis towards digital skin imaging system with haptic feedback.
    Kim K
    Skin Res Technol; 2016 Aug; 22(3):334-40. PubMed ID: 26450343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perception-based 3D tactile rendering from a single image for human skin examinations by dynamic touch.
    Kim K; Lee S
    Skin Res Technol; 2015 May; 21(2):164-74. PubMed ID: 25087469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image-based haptic roughness estimation and rendering for haptic palpation from in vivo skin image.
    Kim K
    Med Biol Eng Comput; 2018 Mar; 56(3):413-420. PubMed ID: 28785848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roughness preserving filter design to remove spatial noise from stereoscopic skin images for stable haptic rendering.
    Lee K; Kim M; Lee O; Kim K
    Skin Res Technol; 2017 Aug; 23(3):407-415. PubMed ID: 28083934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prototype tactile feedback system for examination by skin touch.
    Lee O; Lee K; Oh C; Kim K; Kim M
    Skin Res Technol; 2014 Aug; 20(3):307-14. PubMed ID: 24267404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gradient-based 3D skin roughness rendering from an in-vivo skin image for dynamic haptic palpation.
    Vicente JI; Kim K
    Skin Res Technol; 2019 May; 25(3):305-317. PubMed ID: 30604497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haptic augmented skin surface generation toward telepalpation from a mobile skin image.
    Kim K
    Skin Res Technol; 2018 May; 24(2):203-212. PubMed ID: 29067717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D skin surface reconstruction from a single image by merging global curvature and local texture using the guided filtering for 3D haptic palpation.
    Lee K; Kim M; Kim K
    Skin Res Technol; 2018 Nov; 24(4):672-685. PubMed ID: 29752745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate depth estimation of skin surface using a light-field camera toward dynamic haptic palpation.
    Ko M; Kim D; Kim K
    Skin Res Technol; 2019 Jul; 25(4):469-481. PubMed ID: 30624813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visuohaptic discrimination of 3D gross shape.
    Kim K; Barni M; Prattichizzo D; Tan HZ
    Seeing Perceiving; 2012; 25(3-4):351-64. PubMed ID: 22472054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Haptic rendering for VR laparoscopic surgery simulation.
    McColl R; Brown I; Seligman C; Lim F; Alsaraira A
    Australas Phys Eng Sci Med; 2006 Mar; 29(1):73-8. PubMed ID: 16623225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roughness perception of unfamiliar dot pattern textures.
    Eck J; Kaas AL; Mulders JL; Goebel R
    Acta Psychol (Amst); 2013 May; 143(1):20-34. PubMed ID: 23500111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesizing the Roughness of Textured Surfaces for an Encountered-Type Haptic Display Using Spatiotemporal Encoding.
    Kim Y; Kim S; Oh U; Kim YJ
    IEEE Trans Haptics; 2021; 14(1):32-43. PubMed ID: 32746377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo determination of skin surface topography using an optical 3D device.
    Jacobi U; Chen M; Frankowski G; Sinkgraven R; Hund M; Rzany B; Sterry W; Lademann J
    Skin Res Technol; 2004 Nov; 10(4):207-14. PubMed ID: 15479444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liver pathology simulation: algorithm for haptic rendering and force maps for palpation assessment.
    Hamza-Lup FG; Seitan A; Popovici DM; Bogdan CM
    Stud Health Technol Inform; 2013; 184():175-81. PubMed ID: 23400152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An improved method for measurement of change in skin roughness caused by cleansing products under mild application conditions.
    Lee E; An S; Im MS; Kim HK; Lee TR
    Skin Res Technol; 2011 Aug; 17(3):320-5. PubMed ID: 21332807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relative importance of visual, auditory, and haptic information for the user's experience of mechanical switches.
    Mortensen DH; Bech S; Begault DR; Adelstein BD
    Perception; 2009; 38(10):1560-71. PubMed ID: 19950486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploration mode affects visuohaptic integration of surface orientation.
    Plaisier MA; van Dam LC; Glowania C; Ernst MO
    J Vis; 2014 Nov; 14(13):22. PubMed ID: 25413627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Haptic and visual perception of roughness.
    Bergmann Tiest WM; Kappers AM
    Acta Psychol (Amst); 2007 Feb; 124(2):177-89. PubMed ID: 16684497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A kinesthetic washout filter for force-feedback rendering.
    Danieau F; Lecuyer A; Guillotel P; Fleureau J; Mollet N; Christie M
    IEEE Trans Haptics; 2015; 8(1):114-8. PubMed ID: 25532190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.