These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 26450348)
21. Interfacial Structure of PtNi Surface Alloy on Pt(111) Electrode for Oxygen Reduction Reaction. Kumeda T; Otsuka N; Tajiri H; Sakata O; Hoshi N; Nakamura M ACS Omega; 2017 May; 2(5):1858-1863. PubMed ID: 31457547 [TBL] [Abstract][Full Text] [Related]
22. Rationalization of promoted reverse water gas shift reaction by Pt Zhang H; Wang X; Frenkel AI; Liu P J Chem Phys; 2021 Jan; 154(1):014702. PubMed ID: 33412872 [TBL] [Abstract][Full Text] [Related]
23. Elucidating the Correlation between ORR Polarization Curves and Kinetics at Metal-Electrolyte Interfaces. Liu H; Chen M; Sun F; Zaman S; Wang M; Wang H ACS Appl Mater Interfaces; 2022 Mar; 14(11):13891-13903. PubMed ID: 35274947 [TBL] [Abstract][Full Text] [Related]
24. Pt/Cr and Pt/Ni catalysts for oxygen reduction reaction: to alloy or not to alloy? Escaño MC; Gyenge E; Nakanishi H; Kasai H J Nanosci Nanotechnol; 2011 Apr; 11(4):2944-51. PubMed ID: 21776658 [TBL] [Abstract][Full Text] [Related]
25. Theoretical insights into the catalytic mechanism for the oxygen reduction reaction on M Tian Y; Zhang Z; Wu C; Yan L; Chen W; Su Z Phys Chem Chem Phys; 2018 Jan; 20(3):1821-1828. PubMed ID: 29292459 [TBL] [Abstract][Full Text] [Related]
26. Theoretical insights on the oxygen-reduction reaction mechanism of LaN Sun X; Li K; Yin C; Wang Y; Tang H; Wu Z J Mol Model; 2017 Dec; 24(1):14. PubMed ID: 29256134 [TBL] [Abstract][Full Text] [Related]
27. Stability of Pt near surface alloys under electrochemical conditions: a model study. Zhang X; Yu S; Zheng W; Liu P Phys Chem Chem Phys; 2014 Aug; 16(31):16615-22. PubMed ID: 24994557 [TBL] [Abstract][Full Text] [Related]
28. A Review on Recent Developments and Prospects for the Oxygen Reduction Reaction on Hollow Pt-alloy Nanoparticles. Asset T; Chattot R; Fontana M; Mercier-Guyon B; Job N; Dubau L; Maillard F Chemphyschem; 2018 Jul; 19(13):1552-1567. PubMed ID: 29578267 [TBL] [Abstract][Full Text] [Related]
29. Face-centered tetragonal (FCT) Fe and Co alloys of Pt as catalysts for the oxygen reduction reaction (ORR): A DFT study. Sharma S; Zeng C; Peterson AA J Chem Phys; 2019 Jan; 150(4):041704. PubMed ID: 30709250 [TBL] [Abstract][Full Text] [Related]
30. Unveiling the Composition-Dependent Catalytic Mechanism of Pt-Ni Alloys for Oxygen Reduction: A First-Principles Study. Xia Z; Zhu X; Chen X; Zhou Y; Luo Q; Yang J J Phys Chem Lett; 2024 Sep; 15(38):9566-9574. PubMed ID: 39265186 [TBL] [Abstract][Full Text] [Related]
31. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Stamenkovic VR; Fowler B; Mun BS; Wang G; Ross PN; Lucas CA; Marković NM Science; 2007 Jan; 315(5811):493-7. PubMed ID: 17218494 [TBL] [Abstract][Full Text] [Related]
32. Temperature dependence of oxygen reduction activity at Pt-Fe, Pt-Co, and Pt-Ni alloy electrodes. Wakabayashi N; Takeichi M; Uchida H; Watanabe M J Phys Chem B; 2005 Mar; 109(12):5836-41. PubMed ID: 16851636 [TBL] [Abstract][Full Text] [Related]
33. Toward full simulation of the electrochemical oxygen reduction reaction on Pt using first-principles and kinetic calculations. Ikeshoji T; Otani M Phys Chem Chem Phys; 2017 Feb; 19(6):4447-4453. PubMed ID: 28120959 [TBL] [Abstract][Full Text] [Related]
34. Potential Energy Surface Profile of the Oxygen Reduction Reaction on a Pt Cluster: Adsorption and Decomposition of OOH and H2O2. Wang Y; Balbuena PB J Chem Theory Comput; 2005 Sep; 1(5):935-43. PubMed ID: 26641909 [TBL] [Abstract][Full Text] [Related]
35. The role of transition metals in the catalytic activity of Pt alloys: quantification of strain and ligand effects. Shao M; Odell JH; Peles A; Su D Chem Commun (Camb); 2014 Feb; 50(17):2173-6. PubMed ID: 24429418 [TBL] [Abstract][Full Text] [Related]
36. A full understanding of oxygen reduction reaction mechanism on Au(1 1 1) surface. Yang Y; Dai C; Fisher A; Shen Y; Cheng D J Phys Condens Matter; 2017 Sep; 29(36):365201. PubMed ID: 28677595 [TBL] [Abstract][Full Text] [Related]
37. Effects of Zr dopants on properties of PtNi nanoparticles for ORR catalysis: A DFT modeling. Farris R; Merinov BV; Bruix A; Neyman KM J Chem Phys; 2024 Mar; 160(12):. PubMed ID: 38530007 [TBL] [Abstract][Full Text] [Related]
38. A band dispersion mechanism for Pt alloy compositional tuning of linear bound CO stretching frequencies. Dimakis N; Iddir H; Díaz-Morales RR; Liu R; Bunker G; Chung EH; Smotkin ES J Phys Chem B; 2005 Feb; 109(5):1839-48. PubMed ID: 16851166 [TBL] [Abstract][Full Text] [Related]
39. In Situ Structure of a Mo-Doped Pt-Ni Catalyst during Electrochemical Oxygen Reduction Resolved from Machine Learning-Based Grand Canonical Global Optimization. Li JL; Li YF; Liu ZP JACS Au; 2023 Apr; 3(4):1162-1175. PubMed ID: 37124303 [TBL] [Abstract][Full Text] [Related]
40. Elucidating Proton Involvement in the Rate-Determining Step for Pt/Pd-Based and Non-Precious-Metal Oxygen Reduction Reaction Catalysts Using the Kinetic Isotope Effect. Tse EC; Varnell JA; Hoang TT; Gewirth AA J Phys Chem Lett; 2016 Sep; 7(18):3542-7. PubMed ID: 27550191 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]