BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 26450348)

  • 21. Interfacial Structure of PtNi Surface Alloy on Pt(111) Electrode for Oxygen Reduction Reaction.
    Kumeda T; Otsuka N; Tajiri H; Sakata O; Hoshi N; Nakamura M
    ACS Omega; 2017 May; 2(5):1858-1863. PubMed ID: 31457547
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rationalization of promoted reverse water gas shift reaction by Pt
    Zhang H; Wang X; Frenkel AI; Liu P
    J Chem Phys; 2021 Jan; 154(1):014702. PubMed ID: 33412872
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elucidating the Correlation between ORR Polarization Curves and Kinetics at Metal-Electrolyte Interfaces.
    Liu H; Chen M; Sun F; Zaman S; Wang M; Wang H
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13891-13903. PubMed ID: 35274947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pt/Cr and Pt/Ni catalysts for oxygen reduction reaction: to alloy or not to alloy?
    Escaño MC; Gyenge E; Nakanishi H; Kasai H
    J Nanosci Nanotechnol; 2011 Apr; 11(4):2944-51. PubMed ID: 21776658
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical insights into the catalytic mechanism for the oxygen reduction reaction on M
    Tian Y; Zhang Z; Wu C; Yan L; Chen W; Su Z
    Phys Chem Chem Phys; 2018 Jan; 20(3):1821-1828. PubMed ID: 29292459
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical insights on the oxygen-reduction reaction mechanism of LaN
    Sun X; Li K; Yin C; Wang Y; Tang H; Wu Z
    J Mol Model; 2017 Dec; 24(1):14. PubMed ID: 29256134
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stability of Pt near surface alloys under electrochemical conditions: a model study.
    Zhang X; Yu S; Zheng W; Liu P
    Phys Chem Chem Phys; 2014 Aug; 16(31):16615-22. PubMed ID: 24994557
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Review on Recent Developments and Prospects for the Oxygen Reduction Reaction on Hollow Pt-alloy Nanoparticles.
    Asset T; Chattot R; Fontana M; Mercier-Guyon B; Job N; Dubau L; Maillard F
    Chemphyschem; 2018 Jul; 19(13):1552-1567. PubMed ID: 29578267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Face-centered tetragonal (FCT) Fe and Co alloys of Pt as catalysts for the oxygen reduction reaction (ORR): A DFT study.
    Sharma S; Zeng C; Peterson AA
    J Chem Phys; 2019 Jan; 150(4):041704. PubMed ID: 30709250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability.
    Stamenkovic VR; Fowler B; Mun BS; Wang G; Ross PN; Lucas CA; Marković NM
    Science; 2007 Jan; 315(5811):493-7. PubMed ID: 17218494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temperature dependence of oxygen reduction activity at Pt-Fe, Pt-Co, and Pt-Ni alloy electrodes.
    Wakabayashi N; Takeichi M; Uchida H; Watanabe M
    J Phys Chem B; 2005 Mar; 109(12):5836-41. PubMed ID: 16851636
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward full simulation of the electrochemical oxygen reduction reaction on Pt using first-principles and kinetic calculations.
    Ikeshoji T; Otani M
    Phys Chem Chem Phys; 2017 Feb; 19(6):4447-4453. PubMed ID: 28120959
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potential Energy Surface Profile of the Oxygen Reduction Reaction on a Pt Cluster:  Adsorption and Decomposition of OOH and H2O2.
    Wang Y; Balbuena PB
    J Chem Theory Comput; 2005 Sep; 1(5):935-43. PubMed ID: 26641909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of transition metals in the catalytic activity of Pt alloys: quantification of strain and ligand effects.
    Shao M; Odell JH; Peles A; Su D
    Chem Commun (Camb); 2014 Feb; 50(17):2173-6. PubMed ID: 24429418
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A full understanding of oxygen reduction reaction mechanism on Au(1 1 1) surface.
    Yang Y; Dai C; Fisher A; Shen Y; Cheng D
    J Phys Condens Matter; 2017 Sep; 29(36):365201. PubMed ID: 28677595
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of Zr dopants on properties of PtNi nanoparticles for ORR catalysis: A DFT modeling.
    Farris R; Merinov BV; Bruix A; Neyman KM
    J Chem Phys; 2024 Mar; 160(12):. PubMed ID: 38530007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A band dispersion mechanism for Pt alloy compositional tuning of linear bound CO stretching frequencies.
    Dimakis N; Iddir H; Díaz-Morales RR; Liu R; Bunker G; Chung EH; Smotkin ES
    J Phys Chem B; 2005 Feb; 109(5):1839-48. PubMed ID: 16851166
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In Situ Structure of a Mo-Doped Pt-Ni Catalyst during Electrochemical Oxygen Reduction Resolved from Machine Learning-Based Grand Canonical Global Optimization.
    Li JL; Li YF; Liu ZP
    JACS Au; 2023 Apr; 3(4):1162-1175. PubMed ID: 37124303
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Elucidating Proton Involvement in the Rate-Determining Step for Pt/Pd-Based and Non-Precious-Metal Oxygen Reduction Reaction Catalysts Using the Kinetic Isotope Effect.
    Tse EC; Varnell JA; Hoang TT; Gewirth AA
    J Phys Chem Lett; 2016 Sep; 7(18):3542-7. PubMed ID: 27550191
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reaction Pathway for Oxygen Reduction on FeN4 Embedded Graphene.
    Kattel S; Wang G
    J Phys Chem Lett; 2014 Feb; 5(3):452-6. PubMed ID: 26276591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.