These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 26450631)
1. Application of differential scanning calorimetry to measure the differential binding of ions, water and protons in the unfolding of DNA molecules. Olsen CM; Shikiya R; Ganugula R; Reiling-Steffensmeier C; Khutsishvili I; Johnson SE; Marky LA Biochim Biophys Acta; 2016 May; 1860(5):990-998. PubMed ID: 26450631 [TBL] [Abstract][Full Text] [Related]
2. Unfolding thermodynamics of DNA intramolecular complexes involving joined triple- and double-helical motifs. Khutsishvili I; Johnson S; Lee HT; Marky LA Methods Enzymol; 2009; 466():477-502. PubMed ID: 21609873 [TBL] [Abstract][Full Text] [Related]
3. Unfolding thermodynamics of DNA pyrimidine triplexes with different molecularities. Lee HT; Arciniegas S; Marky LA J Phys Chem B; 2008 Apr; 112(15):4833-40. PubMed ID: 18358029 [TBL] [Abstract][Full Text] [Related]
5. Thermodynamic and hydration effects for the incorporation of a cationic 3-aminopropyl chain into DNA. Soto AM; Kankia BI; Dande P; Gold B; Marky LA Nucleic Acids Res; 2002 Jul; 30(14):3171-80. PubMed ID: 12136099 [TBL] [Abstract][Full Text] [Related]
6. Energetics, Ion, and Water Binding of the Unfolding of AA/UU Base Pair Stacks and UAU/UAU Base Triplet Stacks in RNA. Carr CE; Khutsishvili I; Marky LA J Phys Chem B; 2018 Jul; 122(28):7057-7065. PubMed ID: 29932334 [TBL] [Abstract][Full Text] [Related]
7. Differential hydration of dA.dT base pairing and dA and dT bulges in deoxyoligonucleotides. Zieba K; Chu TM; Kupke DW; Marky LA Biochemistry; 1991 Aug; 30(32):8018-26. PubMed ID: 1868075 [TBL] [Abstract][Full Text] [Related]
8. Energetic contributions for the formation of TAT/TAT, TAT/CGC(+), and CGC(+)/CGC(+) base triplet stacks. Soto AM; Loo J; Marky LA J Am Chem Soc; 2002 Dec; 124(48):14355-63. PubMed ID: 12452709 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamic properties of a conformationally constrained intramolecular DNA triple helix. Völker J; Osborne SE; Glick GD; Breslauer KJ Biochemistry; 1997 Jan; 36(4):756-67. PubMed ID: 9020773 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamic contributions for the incorporation of GTA triplets within canonical TAT/TAT and C+GC/C+GC base-triplet stacks of DNA triplexes. Soto AM; Marky LA Biochemistry; 2002 Oct; 41(41):12475-82. PubMed ID: 12369838 [TBL] [Abstract][Full Text] [Related]
11. Linkage of proton binding to the thermal dissociation of triple helix complex. Petraccone L; Erra E; Mattia CA; Fedullo V; Barone G; Giancola C Biophys Chem; 2004 Jul; 110(1-2):73-81. PubMed ID: 15223145 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamics of an intramolecular DNA triple helix: a calorimetric and spectroscopic study of the pH and salt dependence of thermally induced structural transitions. Plum GE; Breslauer KJ J Mol Biol; 1995 May; 248(3):679-95. PubMed ID: 7752233 [TBL] [Abstract][Full Text] [Related]
13. Unfolding thermodynamics of intramolecular G-quadruplexes: base sequence contributions of the loops. Olsen CM; Lee HT; Marky LA J Phys Chem B; 2009 Mar; 113(9):2587-95. PubMed ID: 19014184 [TBL] [Abstract][Full Text] [Related]
14. Contribution of loops and nicks to the formation of DNA dumbbells: melting behavior and ligand binding. Rentzeperis D; Ho J; Marky LA Biochemistry; 1993 Mar; 32(10):2564-72. PubMed ID: 8448114 [TBL] [Abstract][Full Text] [Related]
15. Calorimetric unfolding of intramolecular triplexes: length dependence and incorporation of single AT --> TA substitutions in the duplex domain. Shikiya R; Marky LA J Phys Chem B; 2005 Sep; 109(38):18177-83. PubMed ID: 16853334 [TBL] [Abstract][Full Text] [Related]
16. Probing the Temperature Unfolding of a Variety of DNA Secondary Structures Using the Fluorescence Properties of 2-aminopurine. Lee HT; Waters L; Olsen CM; Khutsishvili I; Marky LA Acta Chim Slov; 2012 Sep; 59(3):443-53. PubMed ID: 24061296 [TBL] [Abstract][Full Text] [Related]
17. DNA complexes containing joined triplex and duplex motifs: melting behavior of intramolecular and bimolecular complexes with similar sequences. Lee HT; Khutsishvili I; Marky LA J Phys Chem B; 2010 Jan; 114(1):541-8. PubMed ID: 19928823 [TBL] [Abstract][Full Text] [Related]
18. Loop contributions to the folding thermodynamics of DNA straight hairpin loops and pseudoknots. Reiling C; Khutsishvili I; Huang K; Marky LA J Phys Chem B; 2015 Feb; 119(5):1939-46. PubMed ID: 25584896 [TBL] [Abstract][Full Text] [Related]
19. Coupling of sequential transitions in a DNA double hairpin: energetics, ion binding, and hydration. Rentzeperis D; Kharakoz DP; Marky LA Biochemistry; 1991 Jun; 30(25):6276-83. PubMed ID: 2059634 [TBL] [Abstract][Full Text] [Related]
20. Counterion association with native and denatured nucleic acids: an experimental approach. Völker J; Klump HH; Manning GS; Breslauer KJ J Mol Biol; 2001 Jul; 310(5):1011-25. PubMed ID: 11501992 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]