These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
661 related articles for article (PubMed ID: 26450706)
21. Destructive and non-destructive early detection of postharvest noble rot (Botrytis cinerea) in wine grapes aimed at producing high-quality wines. Modesti M; Alfieri G; Chieffo C; Mencarelli F; Vannini A; Catalani A; Chilosi G; Bellincontro A J Sci Food Agric; 2024 Mar; 104(4):2314-2325. PubMed ID: 37950679 [TBL] [Abstract][Full Text] [Related]
22. Biological Control of Botrytis cinerea: Interactions with Native Vineyard Yeasts from Washington State. Wang X; Glawe DA; Kramer E; Weller D; Okubara PA Phytopathology; 2018 Jun; 108(6):691-701. PubMed ID: 29334476 [TBL] [Abstract][Full Text] [Related]
23. Draft Genome Sequence of Botrytis cinerea BcDW1, Inoculum for Noble Rot of Grape Berries. Blanco-Ulate B; Allen G; Powell AL; Cantu D Genome Announc; 2013 May; 1(3):. PubMed ID: 23704180 [TBL] [Abstract][Full Text] [Related]
24. The microbial ecology of wine grape berries. Barata A; Malfeito-Ferreira M; Loureiro V Int J Food Microbiol; 2012 Feb; 153(3):243-59. PubMed ID: 22189021 [TBL] [Abstract][Full Text] [Related]
25. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Castellarin SD; Matthews MA; Di Gaspero G; Gambetta GA Planta; 2007 Dec; 227(1):101-12. PubMed ID: 17694320 [TBL] [Abstract][Full Text] [Related]
26. Environmental Conditions Affect Botrytis cinerea Infection of Mature Grape Berries More Than the Strain or Transposon Genotype. Ciliberti N; Fermaud M; Roudet J; Rossi V Phytopathology; 2015 Aug; 105(8):1090-6. PubMed ID: 26218433 [TBL] [Abstract][Full Text] [Related]
27. Botrytized wines. Magyar I Adv Food Nutr Res; 2011; 63():147-206. PubMed ID: 21867895 [TBL] [Abstract][Full Text] [Related]
28. Cluster bagging promotes melatonin biosynthesis in the berry skins of Vitis vinifera cv. Cabernet Sauvignon and Carignan during development and ripening. Guo SH; Xu TF; Shi TC; Jin XQ; Feng MX; Zhao XH; Zhang ZW; Meng JF Food Chem; 2020 Feb; 305():125502. PubMed ID: 31606692 [TBL] [Abstract][Full Text] [Related]
29. Characterization of a multifunctional caffeoyl-CoA O-methyltransferase activated in grape berries upon drought stress. Giordano D; Provenzano S; Ferrandino A; Vitali M; Pagliarani C; Roman F; Cardinale F; Castellarin SD; Schubert A Plant Physiol Biochem; 2016 Apr; 101():23-32. PubMed ID: 26851572 [TBL] [Abstract][Full Text] [Related]
30. Berry Shriveling Significantly Alters Shiraz (Vitis vinifera L.) Grape and Wine Chemical Composition. Šuklje K; Zhang X; Antalick G; Clark AC; Deloire A; Schmidtke LM J Agric Food Chem; 2016 Feb; 64(4):870-80. PubMed ID: 26761394 [TBL] [Abstract][Full Text] [Related]
31. The common transcriptional subnetworks of the grape berry skin in the late stages of ripening. Ghan R; Petereit J; Tillett RL; Schlauch KA; Toubiana D; Fait A; Cramer GR BMC Plant Biol; 2017 May; 17(1):94. PubMed ID: 28558655 [TBL] [Abstract][Full Text] [Related]
32. Tracking cell wall changes in wine and table grapes undergoing Botrytis cinerea infection using glycan microarrays. Weiller F; Schückel J; Willats WGT; Driouich A; Vivier MA; Moore JP Ann Bot; 2021 Sep; 128(5):527-543. PubMed ID: 34192306 [TBL] [Abstract][Full Text] [Related]
33. Ripening Transcriptomic Program in Red and White Grapevine Varieties Correlates with Berry Skin Anthocyanin Accumulation. Massonnet M; Fasoli M; Tornielli GB; Altieri M; Sandri M; Zuccolotto P; Paci P; Gardiman M; Zenoni S; Pezzotti M Plant Physiol; 2017 Aug; 174(4):2376-2396. PubMed ID: 28652263 [TBL] [Abstract][Full Text] [Related]
35. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. Fortes AM; Agudelo-Romero P; Silva MS; Ali K; Sousa L; Maltese F; Choi YH; Grimplet J; Martinez-Zapater JM; Verpoorte R; Pais MS BMC Plant Biol; 2011 Nov; 11():149. PubMed ID: 22047180 [TBL] [Abstract][Full Text] [Related]
36. The potential aroma and flavor compounds in Vitis sp. cv. Koshu and V. vinifera L. cv. Chardonnay under different environmental conditions. Bahena-Garrido SM; Ohama T; Suehiro Y; Hata Y; Isogai A; Iwashita K; Goto-Yamamoto N; Koyama K J Sci Food Agric; 2019 Mar; 99(4):1926-1937. PubMed ID: 30270444 [TBL] [Abstract][Full Text] [Related]
37. Molecular analysis of the early interaction between the grapevine flower and Botrytis cinerea reveals that prompt activation of specific host pathways leads to fungus quiescence. Haile ZM; Pilati S; Sonego P; Malacarne G; Vrhovsek U; Engelen K; Tudzynski P; Zottini M; Baraldi E; Moser C Plant Cell Environ; 2017 Aug; 40(8):1409-1428. PubMed ID: 28239986 [TBL] [Abstract][Full Text] [Related]
38. Development of a qPCR method for classification of botrytized grape berries originated from Tokaj wine region. Belák Á; Kovács M; Ittzés A; Pomázi A Food Microbiol; 2024 Oct; 123():104582. PubMed ID: 39038888 [TBL] [Abstract][Full Text] [Related]
39. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism. Martínez-Esteso MJ; Sellés-Marchart S; Lijavetzky D; Pedreño MA; Bru-Martínez R J Exp Bot; 2011 May; 62(8):2521-69. PubMed ID: 21576399 [TBL] [Abstract][Full Text] [Related]
40. Impact of Leaf Removal, Applied Before and After Flowering, on Anthocyanin, Tannin, and Methoxypyrazine Concentrations in 'Merlot' (Vitis vinifera L.) Grapes and Wines. Sivilotti P; Herrera JC; Lisjak K; Baša Česnik H; Sabbatini P; Peterlunger E; Castellarin SD J Agric Food Chem; 2016 Jun; 64(22):4487-96. PubMed ID: 27180819 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]