These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 26451387)

  • 1. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure.
    Ding YL; Wang GX; Sun P; Wu LY; Yue Q
    ScientificWorldJournal; 2015; 2015():250562. PubMed ID: 26451387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated system of structural health monitoring and intelligent management for a cable-stayed bridge.
    Chen B; Wang X; Sun D; Xie X
    ScientificWorldJournal; 2014; 2014():689471. PubMed ID: 25140342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of bridge scour in the lower, middle, and upper Yangtze River estuary with riverbed sonar profiling techniques.
    Zheng S; Xu YJ; Cheng H; Wang B; Lu X
    Environ Monit Assess; 2017 Dec; 190(1):15. PubMed ID: 29234976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring stress changes in a concrete bridge with coda wave interferometry.
    Stähler SC; Sens-Schönfelder C; Niederleithinger E
    J Acoust Soc Am; 2011 Apr; 129(4):1945-52. PubMed ID: 21476650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying the Impact of Environment Loads on Displacements in a Suspension Bridge with a Data-Driven Approach.
    Li J; Meng X; Hu L; Bao Y
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of Railway Bridge Structural Health Monitoring into the Internet of Things with a Digital Twin: A Case Study.
    Armijo A; Zamora-Sánchez D
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High speed railway environment safety evaluation based on measurement attribute recognition model.
    Hu Q; Gao N; Zhang B
    Comput Intell Neurosci; 2014; 2014():470758. PubMed ID: 25435866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deployment of a Smart Structural Health Monitoring System for Long-Span Arch Bridges: A Review and a Case Study.
    Chen Z; Zhou X; Wang X; Dong L; Qian Y
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28925943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-Term Deflection Prediction from Computer Vision-Measured Data History for High-Speed Railway Bridges.
    Lee J; Lee KC; Lee YJ
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29747421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seismic isolation retrofitting solution for an existing steel cable-stayed bridge.
    Javanmardi A; Ibrahim Z; Ghaedi K; Khan NB; Benisi Ghadim H
    PLoS One; 2018; 13(7):e0200482. PubMed ID: 30059506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Safety identifying of integral abutment bridges under seismic and thermal loads.
    Easazadeh Far N; Barghian M
    ScientificWorldJournal; 2014; 2014():757608. PubMed ID: 25405232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review.
    Ye XW; Su YH; Han JP
    ScientificWorldJournal; 2014; 2014():652329. PubMed ID: 25133250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibration-based monitoring for performance evaluation of flexible civil structures in Japan.
    Fujino Y
    Proc Jpn Acad Ser B Phys Biol Sci; 2018; 94(2):98-128. PubMed ID: 29434082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knowledge discovery from vibration measurements.
    Deng J; Li J; Wang D
    ScientificWorldJournal; 2014; 2014():917524. PubMed ID: 24574933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffuse ultrasonic wave-based structural health monitoring for railway turnouts.
    Wang K; Cao W; Xu L; Yang X; Su Z; Zhang X; Chen L
    Ultrasonics; 2020 Feb; 101():106031. PubMed ID: 31550624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring of the Static and Dynamic Displacements of Railway Bridges with the Use of Inertial Sensors.
    Olaszek P; Wyczałek I; Sala D; Kokot M; Świercz A
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32408682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dataset for damage detection retrieved from a monitored bridge pre and post verified damage.
    Leander J; Nyman J; Karoumi R; Rosengren P; Johansson G
    Data Brief; 2023 Dec; 51():109729. PubMed ID: 37965592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model Updating for Nam O Bridge Using Particle Swarm Optimization Algorithm and Genetic Algorithm.
    Tran-Ngoc H; Khatir S; De Roeck G; Bui-Tien T; Nguyen-Ngoc L; Abdel Wahab M
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress Prediction for Distributed Structural Health Monitoring Using Existing Measurements and Pattern Recognition.
    Lu W; Teng J; Zhou Q; Peng Q
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29389852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical Performance of a Ballastless Track System for the Railway Bridges of High-Speed Lines: Experimental and Numerical Study under Thermal Loading.
    Zhang Y; Zhou L; Mahunon AD; Zhang G; Peng X; Zhao L; Yuan Y
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.