These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 26451470)

  • 41. Feather-like Ag@TiO2 nanostructures as plasmonic antenna to enhance optoelectronic performance.
    Wang Y; Zhai J; Song Y
    Phys Chem Chem Phys; 2015 Feb; 17(7):5051-6. PubMed ID: 25597348
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film.
    Zhu A; Luo Y; Tian Y
    Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Using Hot Electrons and Hot Holes for Simultaneous Cocatalyst Deposition on Plasmonic Nanostructures.
    Kontoleta E; Tsoukala A; Askes SHC; Zoethout E; Oksenberg E; Agrawal H; Garnett EC
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):35986-35994. PubMed ID: 32672034
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Self-Optimized Catalysts: Hot-Electron Driven Photosynthesis of Catalytic Photocathodes.
    Kontoleta E; Askes SHC; Garnett EC
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):35713-35719. PubMed ID: 31475816
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Solar-driven plasmonic heterostructure Ti/TiO
    Cheng C; Akram MN; Nilsen O; Pryds N; Wang K
    Phys Chem Chem Phys; 2020 Apr; 22(15):7769-7777. PubMed ID: 32236207
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The surface plasmon-induced hot carrier effect on the catalytic activity of CO oxidation on a Cu
    Lee SW; Hong JW; Lee H; Wi DH; Kim SM; Han SW; Park JY
    Nanoscale; 2018 Jun; 10(23):10835-10843. PubMed ID: 29694476
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Plasmon resonance enhanced optical absorption in inverted polymer/fullerene solar cells with metal nanoparticle-doped solution-processable TiO2 layer.
    Xu MF; Zhu XZ; Shi XB; Liang J; Jin Y; Wang ZK; Liao LS
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):2935-42. PubMed ID: 23510437
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Critical Coupling of Visible Light Extends Hot-Electron Lifetimes for H
    Willis DE; Taheri MM; Kizilkaya O; Leite TR; Zhang L; Ofoegbuna T; Ding K; Dorman JA; Baxter JB; McPeak KM
    ACS Appl Mater Interfaces; 2020 May; 12(20):22778-22788. PubMed ID: 32338494
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhancing plasmonic hot-carrier generation by strong coupling of multiple resonant modes.
    Wong YL; Jia H; Jian A; Lei D; El Abed AI; Zhang X
    Nanoscale; 2021 Feb; 13(5):2792-2800. PubMed ID: 33491704
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Properties of Plasmon-Induced Photoelectric Conversion on a TiO2/NiO p-n Junction with Au Nanoparticles.
    Nakamura K; Oshikiri T; Ueno K; Wang Y; Kamata Y; Kotake Y; Misawa H
    J Phys Chem Lett; 2016 Mar; 7(6):1004-9. PubMed ID: 26918679
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Extracellular Electron Transfer from Aerobic Bacteria to Au-Loaded TiO2 Semiconductor without Light: A New Bacteria-Killing Mechanism Other than Localized Surface Plasmon Resonance or Microbial Fuel Cells.
    Wang G; Feng H; Gao A; Hao Q; Jin W; Peng X; Li W; Wu G; Chu PK
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24509-16. PubMed ID: 27580379
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimization for visible light photocatalytic water splitting: gold-coated and surface-textured TiO2 inverse opal nano-networks.
    Kim K; Thiyagarajan P; Ahn HJ; Kim SI; Jang JH
    Nanoscale; 2013 Jul; 5(14):6254-60. PubMed ID: 23733045
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Exploiting plasmon-induced hot electrons in molecular electronic devices.
    Conklin D; Nanayakkara S; Park TH; Lagadec MF; Stecher JT; Chen X; Therien MJ; Bonnell DA
    ACS Nano; 2013 May; 7(5):4479-86. PubMed ID: 23550717
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Embedding plasmonic nanostructure diodes enhances hot electron emission.
    Knight MW; Wang Y; Urban AS; Sobhani A; Zheng BY; Nordlander P; Halas NJ
    Nano Lett; 2013 Apr; 13(4):1687-92. PubMed ID: 23452192
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A photovoltaic device structure based on internal electron emission.
    McFarland EW; Tang J
    Nature; 2003 Feb; 421(6923):616-8. PubMed ID: 12571591
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Surface plasmon polariton-induced hot carrier generation for photocatalysis.
    Ahn W; Ratchford DC; Pehrsson PE; Simpkins BS
    Nanoscale; 2017 Mar; 9(9):3010-3022. PubMed ID: 28182184
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plasmon-induced spatial electron transfer between single Au nanorods and ALD-coated TiO2: dependence on TiO2 thickness.
    Zheng Z; Tachikawa T; Majima T
    Chem Commun (Camb); 2015 Oct; 51(76):14373-6. PubMed ID: 26269424
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Light-concentrating plasmonic Au superstructures with significantly visible-light-enhanced catalytic performance.
    Yang J; Li Y; Zu L; Tong L; Liu G; Qin Y; Shi D
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8200-8. PubMed ID: 25840556
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dual plasmonic nanostructures for switching polarity of hot electron-induced photocurrent.
    Hu T; Wu J; Han D; Ni Y; Dong W; Chen Z; Wang Z
    Nanoscale; 2020 Jul; 12(27):14668-14675. PubMed ID: 32613970
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Investigation of plasmon resonance in metal/dielectric nanocavities for high-efficiency photocatalytic device.
    Rajput NS; Shao-Horn Y; Li XH; Kim SG; Jouiad M
    Phys Chem Chem Phys; 2017 Jul; 19(26):16989-16999. PubMed ID: 28597895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.