These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 26451676)

  • 21. Nucleic acid helix structure determination from NMR proton chemical shifts.
    van der Werf RM; Tessari M; Wijmenga SS
    J Biomol NMR; 2013 Jun; 56(2):95-112. PubMed ID: 23564038
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NMR solution structure of the N3' --> P5' phosphoramidate duplex d(CGCGAATTCGCG)2 by the iterative relaxation matrix approach.
    Ding D; Gryaznov SM; Wilson WD
    Biochemistry; 1998 Sep; 37(35):12082-93. PubMed ID: 9724520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A dynamic programming algorithm for RNA structure prediction including pseudoknots.
    Rivas E; Eddy SR
    J Mol Biol; 1999 Feb; 285(5):2053-68. PubMed ID: 9925784
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RNA secondary structure analysis of the packaging signal for Moloney murine leukemia virus.
    Alford RL; Honda S; Lawrence CB; Belmont JW
    Virology; 1991 Aug; 183(2):611-9. PubMed ID: 1853563
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic matching algorithm for viral structure prediction.
    Li H; Zhu D; Zhang C; Liu Z; Han H; Xu Z
    Pak J Pharm Sci; 2014 Jul; 27(4 Suppl):1001-4. PubMed ID: 25016258
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The detailed structure of tandem G.A mismatched base-pair motifs in RNA duplexes is context dependent.
    Heus HA; Wijmenga SS; Hoppe H; Hilbers CW
    J Mol Biol; 1997 Aug; 271(1):147-58. PubMed ID: 9300061
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics.
    Reeder J; Giegerich R
    BMC Bioinformatics; 2004 Aug; 5():104. PubMed ID: 15294028
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An interactive framework for RNA secondary structure prediction with a dynamical treatment of constraints.
    Gaspin C; Westhof E
    J Mol Biol; 1995 Nov; 254(2):163-74. PubMed ID: 7490740
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solution NMR structure and backbone dynamics of the major cold-shock protein (CspA) from Escherichia coli: evidence for conformational dynamics in the single-stranded RNA-binding site.
    Feng W; Tejero R; Zimmerman DE; Inouye M; Montelione GT
    Biochemistry; 1998 Aug; 37(31):10881-96. PubMed ID: 9692981
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bridging the gap in RNA structure prediction.
    Shapiro BA; Yingling YG; Kasprzak W; Bindewald E
    Curr Opin Struct Biol; 2007 Apr; 17(2):157-65. PubMed ID: 17383172
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A partition function algorithm for nucleic acid secondary structure including pseudoknots.
    Dirks RM; Pierce NA
    J Comput Chem; 2003 Oct; 24(13):1664-77. PubMed ID: 12926009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of RNA 1H and 13C chemical shifts: a structure based approach.
    Frank AT; Bae SH; Stelzer AC
    J Phys Chem B; 2013 Oct; 117(43):13497-506. PubMed ID: 24033307
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assignment and NOE analysis of 2'-hydroxyl protons in RNA: implications for stabilization of RNA A-form duplexes.
    Hennig M; Fohrer J; Carlomagno T
    J Am Chem Soc; 2005 Feb; 127(7):2028-9. PubMed ID: 15713064
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient detection of hydrogen bonds in dynamic regions of RNA by sensitivity-optimized NMR pulse sequences.
    Dallmann A; Simon B; Duszczyk MM; Kooshapur H; Pardi A; Bermel W; Sattler M
    Angew Chem Int Ed Engl; 2013 Sep; 52(40):10487-90. PubMed ID: 23946052
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New NMR experiments for RNA nucleobase resonance assignment and chemical shift analysis of an RNA UUCG tetraloop.
    Fürtig B; Richter C; Bermel W; Schwalbe H
    J Biomol NMR; 2004 Jan; 28(1):69-79. PubMed ID: 14739640
    [No Abstract]   [Full Text] [Related]  

  • 36. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes.
    Victora A; Möller HM; Exner TE
    Nucleic Acids Res; 2014 Dec; 42(22):e173. PubMed ID: 25404135
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conditional Prediction of Ribonucleic Acid Secondary Structure Using Chemical Shifts.
    Zhang K; Frank AT
    J Phys Chem B; 2020 Jan; 124(3):470-478. PubMed ID: 31829591
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel
    Schnieders R; Wolter AC; Richter C; Wöhnert J; Schwalbe H; Fürtig B
    Angew Chem Int Ed Engl; 2019 Jul; 58(27):9140-9144. PubMed ID: 31131949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solution structure of Cobalt(III)hexammine complexed to the GAAA tetraloop, and metal-ion binding to G.A mismatches.
    Rüdisser S; Tinoco I
    J Mol Biol; 2000 Feb; 295(5):1211-23. PubMed ID: 10653698
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measurement of ribose carbon chemical shift tensors for A-form RNA by liquid crystal NMR spectroscopy.
    Bryce DL; Grishaev A; Bax A
    J Am Chem Soc; 2005 May; 127(20):7387-96. PubMed ID: 15898787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.