These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 26451676)

  • 61. Analysis of the performance of the CHESHIRE and YAPP methods at CASD-NMR round 3.
    Cavalli A; Vendruscolo M
    J Biomol NMR; 2015 Aug; 62(4):503-9. PubMed ID: 25990018
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Chemical shifts-based similarity restraints improve accuracy of RNA structures determined via NMR.
    Lawrence C; Grishaev A
    RNA; 2020 Dec; 26(12):2051-2061. PubMed ID: 32917774
    [TBL] [Abstract][Full Text] [Related]  

  • 63. ATTfold: RNA Secondary Structure Prediction With Pseudoknots Based on Attention Mechanism.
    Wang Y; Liu Y; Wang S; Liu Z; Gao Y; Zhang H; Dong L
    Front Genet; 2020; 11():612086. PubMed ID: 33384721
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A procedure to validate and correct the 13C chemical shift calibration of RNA datasets.
    Aeschbacher T; Schubert M; Allain FH
    J Biomol NMR; 2012 Feb; 52(2):179-90. PubMed ID: 22252483
    [TBL] [Abstract][Full Text] [Related]  

  • 65. RNA Dynamics by NMR Spectroscopy.
    Marušič M; Schlagnitweit J; Petzold K
    Chembiochem; 2019 Nov; 20(21):2685-2710. PubMed ID: 30997719
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The predictive accuracy of secondary chemical shifts is more affected by protein secondary structure than solvent environment.
    Tremblay ML; Banks AW; Rainey JK
    J Biomol NMR; 2010 Apr; 46(4):257-70. PubMed ID: 20213252
    [TBL] [Abstract][Full Text] [Related]  

  • 67. NMR-assisted prediction of RNA secondary structure: identification of a probable pseudoknot in the coding region of an R2 retrotransposon.
    Hart JM; Kennedy SD; Mathews DH; Turner DH
    J Am Chem Soc; 2008 Aug; 130(31):10233-9. PubMed ID: 18613678
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Improving 3D structure prediction from chemical shift data.
    van der Schot G; Zhang Z; Vernon R; Shen Y; Vranken WF; Baker D; Bonvin AM; Lange OF
    J Biomol NMR; 2013 Sep; 57(1):27-35. PubMed ID: 23912841
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Utility of 1H NMR chemical shifts in determining RNA structure and dynamics.
    Frank AT; Horowitz S; Andricioaei I; Al-Hashimi HM
    J Phys Chem B; 2013 Feb; 117(7):2045-52. PubMed ID: 23320790
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Strategy for automated NMR resonance assignment of RNA: application to 48-nucleotide K10.
    Krähenbühl B; Lukavsky P; Wider G
    J Biomol NMR; 2014 Aug; 59(4):231-40. PubMed ID: 24899400
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression.
    Brown JD; Summers MF; Johnson BA
    J Biomol NMR; 2015 Sep; 63(1):39-52. PubMed ID: 26141454
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Assigning NMR spectra of RNA, peptides and small organic molecules using molecular network visualization software.
    Marchant J; Summers MF; Johnson BA
    J Biomol NMR; 2019 Nov; 73(10-11):525-529. PubMed ID: 31325088
    [TBL] [Abstract][Full Text] [Related]  

  • 73. SHAPE-directed RNA secondary structure prediction.
    Low JT; Weeks KM
    Methods; 2010 Oct; 52(2):150-8. PubMed ID: 20554050
    [TBL] [Abstract][Full Text] [Related]  

  • 74. (1)H-(31)P CPMG-correlated experiments for the assignment of nucleic acids.
    Luy B; Marino JP
    J Am Chem Soc; 2001 Nov; 123(45):11306-7. PubMed ID: 11697980
    [No Abstract]   [Full Text] [Related]  

  • 75. Solution-state structure of a fully alternately 2'-F/2'-OMe modified 42-nt dimeric siRNA construct.
    Podbevsek P; Allerson CR; Bhat B; Plavec J
    Nucleic Acids Res; 2010 Nov; 38(20):7298-307. PubMed ID: 20624819
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Chemical shift prediction of RNA imino groups: application toward characterizing RNA excited states.
    Wang Y; Han G; Jiang X; Yuwen T; Xue Y
    Nat Commun; 2021 Mar; 12(1):1595. PubMed ID: 33707433
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Improved RNA secondary structure prediction by maximizing expected pair accuracy.
    Lu ZJ; Gloor JW; Mathews DH
    RNA; 2009 Oct; 15(10):1805-13. PubMed ID: 19703939
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Applications of NMR to structure determination of RNAs large and small.
    Barnwal RP; Yang F; Varani G
    Arch Biochem Biophys; 2017 Aug; 628():42-56. PubMed ID: 28600200
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Study of the RNA secondary structure prediction].
    Sun Y; Lu H; Gui J; Song X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Oct; 31(5):1065-9. PubMed ID: 25764723
    [TBL] [Abstract][Full Text] [Related]  

  • 80. On the significance of an RNA tertiary structure prediction.
    Hajdin CE; Ding F; Dokholyan NV; Weeks KM
    RNA; 2010 Jul; 16(7):1340-9. PubMed ID: 20498460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.