These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 26451679)
1. Detection of Carbon Nanotubes in Indoor Workplaces Using Elemental Impurities. Rasmussen PE; Avramescu ML; Jayawardene I; Gardner HD Environ Sci Technol; 2015 Nov; 49(21):12888-96. PubMed ID: 26451679 [TBL] [Abstract][Full Text] [Related]
2. Detection of Carbonaceous Aerosols Released in CNT Workplaces Using an Aethalometer. Kim JB; Kim KH; Yun ST; Bae GN Ann Occup Hyg; 2016 Jul; 60(6):717-30. PubMed ID: 27179059 [TBL] [Abstract][Full Text] [Related]
3. Carbon Nanotube Emissions from Arc Discharge Production: Classification of Particle Types with Electron Microscopy and Comparison with Direct Reading Techniques. Ludvigsson L; Isaxon C; Nilsson PT; Tinnerberg H; Messing ME; Rissler J; Skaug V; Gudmundsson A; Bohgard M; Hedmer M; Pagels J Ann Occup Hyg; 2016 May; 60(4):493-512. PubMed ID: 26748380 [TBL] [Abstract][Full Text] [Related]
4. Real-Time Emission and Exposure Measurements of Multi-walled Carbon Nanotubes during Production, Power Sawing, and Testing of Epoxy-Based Nanocomposites. Hedmer M; Lovén K; Martinsson J; Messing ME; Gudmundsson A; Pagels J Ann Work Expo Health; 2022 Aug; 66(7):878-894. PubMed ID: 35297480 [TBL] [Abstract][Full Text] [Related]
5. Detection of airborne carbon nanotubes based on the reactivity of the embedded catalyst. Neubauer N; Kasper G J Occup Environ Hyg; 2015; 12(3):182-8. PubMed ID: 25271474 [TBL] [Abstract][Full Text] [Related]
6. Determination of Metal Impurities in Carbon Nanotubes Sampled Using Surface Wipes. Avramescu ML; Rasmussen PE; Chénier M J Anal Methods Chem; 2016; 2016():3834292. PubMed ID: 27974992 [TBL] [Abstract][Full Text] [Related]
7. Use of Raman spectroscopy to identify carbon nanotube contamination at an analytical balance workstation. Braun EI; Huang A; Tusa CA; Yukica MA; Pantano P J Occup Environ Hyg; 2016 Dec; 13(12):915-923. PubMed ID: 27224520 [TBL] [Abstract][Full Text] [Related]
8. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes. Hedmer M; Isaxon C; Nilsson PT; Ludvigsson L; Messing ME; Genberg J; Skaug V; Bohgard M; Tinnerberg H; Pagels JH Ann Occup Hyg; 2014 Apr; 58(3):355-79. PubMed ID: 24389082 [TBL] [Abstract][Full Text] [Related]
9. Determination of inorganic contaminants in carbon nanotubes by plasma-based techniques: Overcoming the limitations of sample preparation. Krzyzaniak SR; Iop GD; Holkem AP; Flores EMM; Mello PA Talanta; 2019 Jan; 192():255-262. PubMed ID: 30348387 [TBL] [Abstract][Full Text] [Related]
10. Detection of single walled carbon nanotubes by monitoring embedded metals. Reed RB; Goodwin DG; Marsh KL; Capracotta SS; Higgins CP; Fairbrother DH; Ranville JF Environ Sci Process Impacts; 2013 Jan; 15(1):204-13. PubMed ID: 24592437 [TBL] [Abstract][Full Text] [Related]
11. Metal impurities dominate the sorption of a commercially available carbon nanotube for Pb(II) from water. Tian X; Zhou S; Zhang Z; He X; Yu M; Lin D Environ Sci Technol; 2010 Nov; 44(21):8144-9. PubMed ID: 20919734 [TBL] [Abstract][Full Text] [Related]
12. Aerosol Emission Monitoring and Assessment of Potential Exposure to Multi-walled Carbon Nanotubes in the Manufacture of Polymer Nanocomposites. Thompson D; Chen SC; Wang J; Pui DY Ann Occup Hyg; 2015 Nov; 59(9):1135-51. PubMed ID: 26209597 [TBL] [Abstract][Full Text] [Related]
13. Significance and systematic analysis of metallic impurities of carbon nanotubes produced by different manufacturers. Ge C; Li W; Li Y; Li B; Du J; Qiu Y; Liu Y; Gao Y; Chai Z; Chen C J Nanosci Nanotechnol; 2011 Mar; 11(3):2389-97. PubMed ID: 21449398 [TBL] [Abstract][Full Text] [Related]
14. Quantitative analysis of metal impurities in carbon nanotubes: efficacy of different pretreatment protocols for ICPMS spectroscopy. Ge C; Lao F; Li W; Li Y; Chen C; Qiu Y; Mao X; Li B; Chai Z; Zhao Y Anal Chem; 2008 Dec; 80(24):9426-34. PubMed ID: 18998708 [TBL] [Abstract][Full Text] [Related]
15. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Jung JH; Hwang GB; Lee JE; Bae GN Langmuir; 2011 Aug; 27(16):10256-64. PubMed ID: 21751779 [TBL] [Abstract][Full Text] [Related]
16. Real-Time Measurement of Airborne Carbon Nanotubes in Workplace Atmospheres. Zheng L; Kulkarni P Anal Chem; 2019 Oct; 91(20):12713-12723. PubMed ID: 31502830 [TBL] [Abstract][Full Text] [Related]
17. Quantification of Carbon Nanotubes by Raman Analysis. Lynch JA; Birch QT; Ridgway TH; Birch ME Ann Work Expo Health; 2018 May; 62(5):604-612. PubMed ID: 29718067 [TBL] [Abstract][Full Text] [Related]
18. A New Approach Combining Analytical Methods for Workplace Exposure Assessment of Inhalable Multi-Walled Carbon Nanotubes. Tromp PC; Kuijpers E; Bekker C; Godderis L; Lan Q; Jedynska AD; Vermeulen R; Pronk A Ann Work Expo Health; 2017 Aug; 61(7):759-772. PubMed ID: 28810684 [TBL] [Abstract][Full Text] [Related]
19. Towards an ultrasensitive method for the determination of metal impurities in carbon nanotubes. Kolodiazhnyi T; Pumera M Small; 2008 Sep; 4(9):1476-84. PubMed ID: 18680097 [TBL] [Abstract][Full Text] [Related]
20. Detection of carbon nanotubes in environmental matrices using programmed thermal analysis. Doudrick K; Herckes P; Westerhoff P Environ Sci Technol; 2012 Nov; 46(22):12246-53. PubMed ID: 22663014 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]