These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 26451725)

  • 1. Exact approaches for scaffolding.
    Weller M; Chateau A; Giroudeau R
    BMC Bioinformatics; 2015; 16 Suppl 14(Suppl 14):S2. PubMed ID: 26451725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GRASS: a generic algorithm for scaffolding next-generation sequencing assemblies.
    Gritsenko AA; Nijkamp JF; Reinders MJ; de Ridder D
    Bioinformatics; 2012 Jun; 28(11):1429-37. PubMed ID: 22492642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-CAR: a tool of contig scaffolding using multiple references.
    Chen KT; Chen CJ; Shen HT; Liu CL; Huang SH; Lu CL
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):469. PubMed ID: 28155633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SOPRA: Scaffolding algorithm for paired reads via statistical optimization.
    Dayarian A; Michael TP; Sengupta AM
    BMC Bioinformatics; 2010 Jun; 11():345. PubMed ID: 20576136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graph accordance of next-generation sequence assemblies.
    Yao G; Ye L; Gao H; Minx P; Warren WC; Weinstock GM
    Bioinformatics; 2012 Jan; 28(1):13-6. PubMed ID: 22025481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ILP-based maximum likelihood genome scaffolding.
    Lindsay J; Salooti H; Măndoiu I; Zelikovsky A
    BMC Bioinformatics; 2014; 15 Suppl 9(Suppl 9):S9. PubMed ID: 25253180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LSG: An External-Memory Tool to Compute String Graphs for Next-Generation Sequencing Data Assembly.
    Bonizzoni P; Vedova GD; Pirola Y; Previtali M; Rizzi R
    J Comput Biol; 2016 Mar; 23(3):137-49. PubMed ID: 26953874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Safe and Complete Contig Assembly Through Omnitigs.
    Tomescu AI; Medvedev P
    J Comput Biol; 2017 Jun; 24(6):590-602. PubMed ID: 27749096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ScaffMatch: scaffolding algorithm based on maximum weight matching.
    Mandric I; Zelikovsky A
    Bioinformatics; 2015 Aug; 31(16):2632-8. PubMed ID: 25890305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pasa: leveraging population pangenome graph to scaffold prokaryote genome assemblies.
    Do VH; Nguyen SH; Le DQ; Nguyen TT; Nguyen CH; Ho TH; Vo NS; Nguyen T; Nguyen HA; Cao MD
    Nucleic Acids Res; 2024 Feb; 52(3):e15. PubMed ID: 38084888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Read mapping on de Bruijn graphs.
    Limasset A; Cazaux B; Rivals E; Peterlongo P
    BMC Bioinformatics; 2016 Jun; 17(1):237. PubMed ID: 27306641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient and scalable scaffolding using optical restriction maps.
    Saha S; Rajasekaran S
    BMC Genomics; 2014; 15 Suppl 5(Suppl 5):S5. PubMed ID: 25081913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SLHSD: hybrid scaffolding method based on short and long reads.
    Luo J; Guan T; Chen G; Yu Z; Zhai H; Yan C; Luo H
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37141142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal assembly for high throughput shotgun sequencing.
    Bresler G; Bresler M; Tse D
    BMC Bioinformatics; 2013; 14 Suppl 5(Suppl 5):S18. PubMed ID: 23902516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CSAR: a contig scaffolding tool using algebraic rearrangements.
    Chen KT; Liu CL; Huang SH; Shen HT; Shieh YK; Chiu HT; Lu CL
    Bioinformatics; 2018 Jan; 34(1):109-111. PubMed ID: 28968788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SLIQ: simple linear inequalities for efficient contig scaffolding.
    Roy RS; Chen KC; Sengupta AM; Schliep A
    J Comput Biol; 2012 Oct; 19(10):1162-75. PubMed ID: 23057825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences.
    Gao S; Sung WK; Nagarajan N
    J Comput Biol; 2011 Nov; 18(11):1681-91. PubMed ID: 21929371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SCOP: a novel scaffolding algorithm based on contig classification and optimization.
    Li M; Tang L; Wu FX; Pan Y; Wang J
    Bioinformatics; 2019 Apr; 35(7):1142-1150. PubMed ID: 30184046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterozygous genome assembly via binary classification of homologous sequence.
    Bodily PM; Fujimoto M; Ortega C; Okuda N; Price JC; Clement MJ; Snell Q
    BMC Bioinformatics; 2015; 16 Suppl 7(Suppl 7):S5. PubMed ID: 25952609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput genome scaffolding from in vivo DNA interaction frequency.
    Kaplan N; Dekker J
    Nat Biotechnol; 2013 Dec; 31(12):1143-7. PubMed ID: 24270850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.