These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26451818)

  • 1. Boosting the FM-Index on the GPU: Effective Techniques to Mitigate Random Memory Access.
    Chacón A; Marco-Sola S; Espinosa A; Ribeca P; Moure JC
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(5):1048-59. PubMed ID: 26451818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BowMapCL: Burrows-Wheeler Mapping on Multiple Heterogeneous Accelerators.
    Nogueira D; Tomas P; Roma N
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):926-938. PubMed ID: 26529775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of GPU- and CPU-implementations of mean-firing rate neural networks on parallel hardware.
    Dinkelbach HÜ; Vitay J; Beuth F; Hamker FH
    Network; 2012; 23(4):212-36. PubMed ID: 23140422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient and Accurate OTU Clustering with GPU-Based Sequence Alignment and Dynamic Dendrogram Cutting.
    Nguyen TD; Schmidt B; Zheng Z; Kwoh CK
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(5):1060-73. PubMed ID: 26451819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full domain-decomposition scheme for diffuse optical tomography of large-sized tissues with a combined CPU and GPU parallelization.
    Yi X; Wang X; Chen W; Wan W; Zhao H; Gao F
    Appl Opt; 2014 May; 53(13):2754-65. PubMed ID: 24921857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast 2-D ultrasound strain imaging: the benefits of using a GPU.
    Idzenga T; Gaburov E; Vermin W; Menssen J; de Korte C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):207-13. PubMed ID: 24402909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GPU-Acceleration of Sequence Homology Searches with Database Subsequence Clustering.
    Suzuki S; Kakuta M; Ishida T; Akiyama Y
    PLoS One; 2016; 11(8):e0157338. PubMed ID: 27482905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computing 2D constrained delaunay triangulation using the GPU.
    Qi M; Cao TT; Tan TS
    IEEE Trans Vis Comput Graph; 2013 May; 19(5):736-48. PubMed ID: 23492377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arioc: High-concurrency short-read alignment on multiple GPUs.
    Wilton R; Szalay AS
    PLoS Comput Biol; 2020 Nov; 16(11):e1008383. PubMed ID: 33166275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementing capon beamforming on a GPU for real-time cardiac ultrasound imaging.
    Åsen JP; Buskenes JI; Colombo Nilsen CI; Austeng A; Holm S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):76-85. PubMed ID: 24402897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment.
    Manavski SA; Valle G
    BMC Bioinformatics; 2008 Mar; 9 Suppl 2(Suppl 2):S10. PubMed ID: 18387198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Medical image processing on the GPU - past, present and future.
    Eklund A; Dufort P; Forsberg D; LaConte SM
    Med Image Anal; 2013 Dec; 17(8):1073-94. PubMed ID: 23906631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Streaming parallel GPU acceleration of large-scale filter-based spiking neural networks.
    Slażyński L; Bohte S
    Network; 2012; 23(4):183-211. PubMed ID: 23098420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hardware-assisted visibility sorting for unstructured volume rendering.
    Callahan SP; Ikits M; Comba JL; Silva CT
    IEEE Trans Vis Comput Graph; 2005; 11(3):285-95. PubMed ID: 15868828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast and reliable collision culling using graphics hardware.
    Govindaraju NK; Lin MC; Manocha D
    IEEE Trans Vis Comput Graph; 2006; 12(2):143-54. PubMed ID: 16509374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast maximum intensity projections of large medical data sets by exploiting hierarchical memory architectures.
    Kiefer G; Lehmann H; Weese J
    IEEE Trans Inf Technol Biomed; 2006 Apr; 10(2):385-94. PubMed ID: 16617627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerating frequency-domain diffuse optical tomographic image reconstruction using graphics processing units.
    Prakash J; Chandrasekharan V; Upendra V; Yalavarthy PK
    J Biomed Opt; 2010; 15(6):066009. PubMed ID: 21198183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FHAST: FPGA-Based Acceleration of Bowtie in Hardware.
    Fernandez EB; Villarreal J; Lonardi S; Najjar WA
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(5):973-81. PubMed ID: 26451812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput sequence alignment using Graphics Processing Units.
    Schatz MC; Trapnell C; Delcher AL; Varshney A
    BMC Bioinformatics; 2007 Dec; 8():474. PubMed ID: 18070356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GASAL2: a GPU accelerated sequence alignment library for high-throughput NGS data.
    Ahmed N; Lévy J; Ren S; Mushtaq H; Bertels K; Al-Ars Z
    BMC Bioinformatics; 2019 Oct; 20(1):520. PubMed ID: 31653208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.