These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26451830)

  • 41. Supervised identification of allergen-representative peptides for in silico detection of potentially allergenic proteins.
    Björklund AK; Soeria-Atmadja D; Zorzet A; Hammerling U; Gustafsson MG
    Bioinformatics; 2005 Jan; 21(1):39-50. PubMed ID: 15319257
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A genetic similarity algorithm for searching the Gene Ontology terms and annotating anonymous protein sequences.
    Othman RM; Deris S; Illias RM
    J Biomed Inform; 2008 Feb; 41(1):65-81. PubMed ID: 17681495
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Detecting protein dissimilarities in multiple alignments using Bayesian variable selection.
    Kim S; Tsai J; Kagiampakis I; LiWang P; Vannucci M
    Bioinformatics; 2007 Jan; 23(2):245-6. PubMed ID: 17105719
    [TBL] [Abstract][Full Text] [Related]  

  • 44. PSS-SQL: protein secondary structure - structured query language.
    Mrozek D; Wieczorek D; Malysiak-Mrozek B; Kozielski S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1073-6. PubMed ID: 21096554
    [TBL] [Abstract][Full Text] [Related]  

  • 45. MRFy: Remote Homology Detection for Beta-Structural Proteins Using Markov Random Fields and Stochastic Search.
    Daniels NM; Gallant A; Ramsey N; Cowen LJ
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(1):4-16. PubMed ID: 26357074
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Word correlation matrices for protein sequence analysis and remote homology detection.
    Lingner T; Meinicke P
    BMC Bioinformatics; 2008 Jun; 9():259. PubMed ID: 18522726
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improved K-means clustering algorithm for exploring local protein sequence motifs representing common structural property.
    Zhong W; Altun G; Harrison R; Tai PC; Pan Y
    IEEE Trans Nanobioscience; 2005 Sep; 4(3):255-65. PubMed ID: 16220690
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Motif kernel generated by genetic programming improves remote homology and fold detection.
    Håndstad T; Hestnes AJ; Saetrom P
    BMC Bioinformatics; 2007 Jan; 8():23. PubMed ID: 17254344
    [TBL] [Abstract][Full Text] [Related]  

  • 49. SABmark--a benchmark for sequence alignment that covers the entire known fold space.
    Van Walle I; Lasters I; Wyns L
    Bioinformatics; 2005 Apr; 21(7):1267-8. PubMed ID: 15333456
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fold recognition by combining profile-profile alignment and support vector machine.
    Han S; Lee BC; Yu ST; Jeong CS; Lee S; Kim D
    Bioinformatics; 2005 Jun; 21(11):2667-73. PubMed ID: 15769835
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative protein structure modeling by combining multiple templates and optimizing sequence-to-structure alignments.
    Fernandez-Fuentes N; Rai BK; Madrid-Aliste CJ; Fajardo JE; Fiser A
    Bioinformatics; 2007 Oct; 23(19):2558-65. PubMed ID: 17823132
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel and efficient technique for identification and classification of GPCRs.
    Gupta R; Mittal A; Singh K
    IEEE Trans Inf Technol Biomed; 2008 Jul; 12(4):541-8. PubMed ID: 18632334
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An efficient, versatile and scalable pattern growth approach to mine frequent patterns in unaligned protein sequences.
    Ye K; Kosters WA; Ijzerman AP
    Bioinformatics; 2007 Mar; 23(6):687-93. PubMed ID: 17237070
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inferring boundary information of discontinuous-domain proteins.
    Sikder AR; Zomaya AY
    IEEE Trans Nanobioscience; 2008 Sep; 7(3):200-5. PubMed ID: 18779100
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Vorolign--fast structural alignment using Voronoi contacts.
    Birzele F; Gewehr JE; Csaba G; Zimmer R
    Bioinformatics; 2007 Jan; 23(2):e205-11. PubMed ID: 17237093
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparative evaluation of word composition distances for the recognition of SCOP relationships.
    Vinga S; Gouveia-Oliveira R; Almeida JS
    Bioinformatics; 2004 Jan; 20(2):206-15. PubMed ID: 14734312
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimizing multiple seeds for protein homology search.
    Brown DG
    IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(1):29-38. PubMed ID: 17044162
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison study on k-word statistical measures for protein: from sequence to 'sequence space'.
    Dai Q; Wang T
    BMC Bioinformatics; 2008 Sep; 9():394. PubMed ID: 18811946
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Relation between weight matrix and substitution matrix: motif search by similarity.
    Zheng WM
    Bioinformatics; 2005 Apr; 21(7):938-43. PubMed ID: 15514002
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Use of multiple profiles corresponding to a sequence alignment enables effective detection of remote homologues.
    Anand B; Gowri VS; Srinivasan N
    Bioinformatics; 2005 Jun; 21(12):2821-6. PubMed ID: 15817691
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.