BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 26451894)

  • 1. A stable graphite negative electrode for the lithium-sulfur battery.
    Jeschull F; Brandell D; Edström K; Lacey MJ
    Chem Commun (Camb); 2015 Dec; 51(96):17100-3. PubMed ID: 26451894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.
    Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-Life Lithium-Ion Sulfur Pouch Battery Enabled by Regulating Solvent Molecules and Using Lithiated Graphite Anode.
    Huang D; Wang Z; Han R; Hu S; Xue J; Wei Y; Song H; Liu Y; Xu J; Ge J; Wu X
    Adv Sci (Weinh); 2023 Oct; 10(30):e2302966. PubMed ID: 37712183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes.
    Yamada Y; Usui K; Chiang CH; Kikuchi K; Furukawa K; Yamada A
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):10892-9. PubMed ID: 24670260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface Layer Evolution on Graphite During Electrochemical Sodium-tetraglyme Co-intercalation.
    Maibach J; Jeschull F; Brandell D; Edström K; Valvo M
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12373-12381. PubMed ID: 28338314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Study of Ether-Based Electrolytes for Application in Lithium-Sulfur Battery.
    Carbone L; Gobet M; Peng J; Devany M; Scrosati B; Greenbaum S; Hassoun J
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13859-65. PubMed ID: 26057152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable Protein-Based Binder for Lithium-Sulfur Cathodes Processed by a Solvent-Free Dry-Coating Method.
    Schmidt F; Kirchhoff S; Jägle K; De A; Ehrling S; Härtel P; Dörfler S; Abendroth T; Schumm B; Althues H; Kaskel S
    ChemSusChem; 2022 Nov; 15(22):e202201320. PubMed ID: 36169208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium-Ion Intercalation into Graphite in SO
    Kim A; Jung H; Song J; Kim HJ; Jeong G; Kim H
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9054-9061. PubMed ID: 30735029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the effect of a fluorinated ether on the performance of lithium-sulfur batteries.
    Azimi N; Xue Z; Bloom I; Gordin ML; Wang D; Daniel T; Takoudis C; Zhang Z
    ACS Appl Mater Interfaces; 2015 May; 7(17):9169-77. PubMed ID: 25866861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Safe and Sustainable Lithium-Ion-Oxygen Battery based on a Low-Cost Dual-Carbon Electrodes Architecture.
    Yang H; Qiao Y; Chang Z; Deng H; He P; Zhou H
    Adv Mater; 2021 Jun; 33(24):e2100827. PubMed ID: 33963774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vertical distribution of overpotentials and irreversible charge losses in lithium ion battery electrodes.
    Klink S; Schuhmann W; La Mantia F
    ChemSusChem; 2014 Aug; 7(8):2159-66. PubMed ID: 24989450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibiting Polysulfide Shuttle in Lithium-Sulfur Batteries through Low-Ion-Pairing Salts and a Triflamide Solvent.
    Shyamsunder A; Beichel W; Klose P; Pang Q; Scherer H; Hoffmann A; Murphy GK; Krossing I; Nazar LF
    Angew Chem Int Ed Engl; 2017 May; 56(22):6192-6197. PubMed ID: 28464473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paving the way for using Li₂S batteries.
    Xu R; Zhang X; Yu C; Ren Y; Li JC; Belharouak I
    ChemSusChem; 2014 Sep; 7(9):2457-60. PubMed ID: 25044568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ-formed Li2S in lithiated graphite electrodes for lithium-sulfur batteries.
    Fu Y; Zu C; Manthiram A
    J Am Chem Soc; 2013 Dec; 135(48):18044-7. PubMed ID: 24245559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of Cycling Performance of Lithium-Sulfur Batteries by Using Magnesium Oxide as a Functional Additive for Trapping Lithium Polysulfide.
    Ponraj R; Kannan AG; Ahn JH; Kim DW
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):4000-6. PubMed ID: 26808673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systematic investigation of polymer binder flexibility on the electrode performance of lithium-ion batteries.
    Yuca N; Zhao H; Song X; Dogdu MF; Yuan W; Fu Y; Battaglia VS; Xiao X; Liu G
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17111-8. PubMed ID: 25203598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena.
    Jache B; Adelhelm P
    Angew Chem Int Ed Engl; 2014 Sep; 53(38):10169-73. PubMed ID: 25056756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-protection of a graphene-sulfur composite by a compact graphene skin and an atomic layer deposited oxide coating for a lithium-sulfur battery.
    Yu M; Wang A; Tian F; Song H; Wang Y; Li C; Hong JD; Shi G
    Nanoscale; 2015 Mar; 7(12):5292-8. PubMed ID: 25721407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study on the impact of different glymes and their derivatives as electrolyte solvents for graphite co-intercalation electrodes in lithium-ion and sodium-ion batteries.
    Jache B; Binder JO; Abe T; Adelhelm P
    Phys Chem Chem Phys; 2016 Jun; 18(21):14299-316. PubMed ID: 27165175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface passivation of natural graphite electrode for lithium ion battery by chlorine gas.
    Suzuki S; Mazej Z; Zemva B; Ohzawa Y; Nakajima T
    Acta Chim Slov; 2013; 60(3):513-20. PubMed ID: 24169705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.