These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
351 related articles for article (PubMed ID: 26451918)
1. Parameter Estimations of Dynamic Energy Budget (DEB) Model over the Life History of a Key Antarctic Species: The Antarctic Sea Star Odontaster validus Koehler, 1906. Agüera A; Collard M; Jossart Q; Moreau C; Danis B PLoS One; 2015; 10(10):e0140078. PubMed ID: 26451918 [TBL] [Abstract][Full Text] [Related]
2. A Dynamic Energy Budget (DEB) model to describe Laternula elliptica (King, 1832) seasonal feeding and metabolism. Agüera A; Ahn IY; Guillaumot C; Danis B PLoS One; 2017; 12(8):e0183848. PubMed ID: 28850607 [TBL] [Abstract][Full Text] [Related]
3. From individuals to populations to communities: a dynamic energy budget model of marine ecosystem size-spectrum including life history diversity. Maury O; Poggiale JC J Theor Biol; 2013 May; 324():52-71. PubMed ID: 23395776 [TBL] [Abstract][Full Text] [Related]
4. The impact of ocean acidification on the gonads of three key Antarctic benthic macroinvertebrates. Dell'Acqua O; Ferrando S; Chiantore M; Asnaghi V Aquat Toxicol; 2019 May; 210():19-29. PubMed ID: 30818112 [TBL] [Abstract][Full Text] [Related]
5. A Dynamic Energy Budget (DEB) model for the keystone predator Pisaster ochraceus. Monaco CJ; Wethey DS; Helmuth B PLoS One; 2014; 9(8):e104658. PubMed ID: 25166351 [TBL] [Abstract][Full Text] [Related]
6. Rhodobacteraceae dominate the core microbiome of the sea star Buschi E; Dell'Anno A; Tangherlini M; Stefanni S; Lo Martire M; Núñez-Pons L; Avila C; Corinaldesi C Front Microbiol; 2023; 14():1234725. PubMed ID: 37799611 [TBL] [Abstract][Full Text] [Related]
8. Overview of the chemical ecology of benthic marine invertebrates along the western Antarctic peninsula. McClintock JB; Amsler CD; Baker BJ Integr Comp Biol; 2010 Dec; 50(6):967-80. PubMed ID: 21558253 [TBL] [Abstract][Full Text] [Related]
9. Crustacea in Arctic and Antarctic sea ice: distribution, diet and life history strategies. Arndt CE; Swadling KM Adv Mar Biol; 2006; 51():197-315. PubMed ID: 16905428 [TBL] [Abstract][Full Text] [Related]
10. Integrating dynamic energy budget (DEB) theory with traditional bioenergetic models. Nisbet RM; Jusup M; Klanjscek T; Pecquerie L J Exp Biol; 2012 Mar; 215(Pt 6):892-902. PubMed ID: 22357583 [TBL] [Abstract][Full Text] [Related]
11. Chapter 1. Impacts of the oceans on climate change. Reid PC; Fischer AC; Lewis-Brown E; Meredith MP; Sparrow M; Andersson AJ; Antia A; Bates NR; Bathmann U; Beaugrand G; Brix H; Dye S; Edwards M; Furevik T; Gangstø R; Hátún H; Hopcroft RR; Kendall M; Kasten S; Keeling R; Le Quéré C; Mackenzie FT; Malin G; Mauritzen C; Olafsson J; Paull C; Rignot E; Shimada K; Vogt M; Wallace C; Wang Z; Washington R Adv Mar Biol; 2009; 56():1-150. PubMed ID: 19895974 [TBL] [Abstract][Full Text] [Related]
12. Sea star wasting syndrome reaches the high Antarctic: Two recent outbreaks in McMurdo Sound. Moran AL; McLachlan RH; Thurber AR PLoS One; 2023; 18(7):e0282550. PubMed ID: 37498849 [TBL] [Abstract][Full Text] [Related]
13. Inferring physiological energetics of loggerhead turtle (Caretta caretta) from existing data using a general metabolic theory. Marn N; Kooijman SALM; Jusup M; Legović T; Klanjšček T Mar Environ Res; 2017 May; 126():14-25. PubMed ID: 28219019 [TBL] [Abstract][Full Text] [Related]
14. Elevated temperature causes metabolic trade-offs at the whole-organism level in the Antarctic fish Trematomus bernacchii. Sandersfeld T; Davison W; Lamare MD; Knust R; Richter C J Exp Biol; 2015 Aug; 218(Pt 15):2373-81. PubMed ID: 26056241 [TBL] [Abstract][Full Text] [Related]
15. Comparative study of in vivo and in vitro phagocytosis including germicidal capacity in Odontaster validus (Koehler, 1906) at 0 degree C. Silva JR; Hernandez-Blazquez FJ; Porto-Neto LR; Borges JC J Invertebr Pathol; 2001 Apr; 77(3):180-5. PubMed ID: 11356053 [TBL] [Abstract][Full Text] [Related]
16. Environmental constraints on life histories in Antarctic ecosystems: tempos, timings and predictability. Peck LS; Convey P; Barnes DK Biol Rev Camb Philos Soc; 2006 Feb; 81(1):75-109. PubMed ID: 16293196 [TBL] [Abstract][Full Text] [Related]
17. Relating suborganismal processes to ecotoxicological and population level endpoints using a bioenergetic model. Ananthasubramaniam B; McCauley E; Gust KA; Kennedy AJ; Muller EB; Perkins EJ; Nisbet RM Ecol Appl; 2015 Sep; 25(6):1691-710. PubMed ID: 26552275 [TBL] [Abstract][Full Text] [Related]
18. Long-term oceanographic and ecological research in the Western English Channel. Southward AJ; Langmead O; Hardman-Mountford NJ; Aiken J; Boalch GT; Dando PR; Genner MJ; Joint I; Kendall MA; Halliday NC; Harris RP; Leaper R; Mieszkowska N; Pingree RD; Richardson AJ; Sims DW; Smith T; Walne AW; Hawkins SJ Adv Mar Biol; 2005; 47():1-105. PubMed ID: 15596166 [TBL] [Abstract][Full Text] [Related]
19. Trace metals in Antarctica related to climate change and increasing human impact. Bargagli R Rev Environ Contam Toxicol; 2000; 166():129-73. PubMed ID: 10868078 [TBL] [Abstract][Full Text] [Related]
20. Illudalane sesquiterpenoids of the alcyopterosin series from the Antarctic marine soft coral Alcyonium grandis. Carbone M; Núñez-Pons L; Castelluccio F; Avila C; Gavagnin M J Nat Prod; 2009 Jul; 72(7):1357-60. PubMed ID: 19432441 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]