These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 26451977)
1. Improved biostability assessment of drinking water with a suite of test methods at a water supply treating eutrophic lake water. van der Kooij D; Martijn B; Schaap PG; Hoogenboezem W; Veenendaal HR; van der Wielen PW Water Res; 2015 Dec; 87():347-55. PubMed ID: 26451977 [TBL] [Abstract][Full Text] [Related]
2. Slowly biodegradable organic compounds impact the biostability of non-chlorinated drinking water produced from surface water. Hijnen WAM; Schurer R; Bahlman JA; Ketelaars HAM; Italiaander R; van der Wal A; van der Wielen PWJJ Water Res; 2018 Feb; 129():240-251. PubMed ID: 29153877 [TBL] [Abstract][Full Text] [Related]
3. Assessment of the microbial growth potential of slow sand filtrate with the biomass production potential test in comparison with the assimilable organic carbon method. van der Kooij D; Veenendaal HR; van der Mark EJ; Dignum M Water Res; 2017 Nov; 125():270-279. PubMed ID: 28865376 [TBL] [Abstract][Full Text] [Related]
4. Enhancing biological stability of disinfectant-free drinking water by reducing high molecular weight organic compounds with ultrafiltration posttreatment. Schurer R; Schippers JC; Kennedy MD; Cornelissen ER; Salinas-Rodriguez SG; Hijnen WAM; van der Wal A Water Res; 2019 Nov; 164():114927. PubMed ID: 31401326 [TBL] [Abstract][Full Text] [Related]
5. Primary Colonizing van der Kooij D; Veenendaal HR; Italiaander R; van der Mark EJ; Dignum M Appl Environ Microbiol; 2018 Dec; 84(24):. PubMed ID: 30291115 [TBL] [Abstract][Full Text] [Related]
6. Exploring the biological stability situation of a full scale water distribution system in south China by three biological stability evaluation methods. Zhang J; Li WY; Wang F; Qian L; Xu C; Liu Y; Qi W Chemosphere; 2016 Oct; 161():43-52. PubMed ID: 27421100 [TBL] [Abstract][Full Text] [Related]
7. A new method to assess the influence of migration from polymeric materials on the biostability of drinking water. Bucheli-Witschel M; Kötzsch S; Darr S; Widler R; Egli T Water Res; 2012 Sep; 46(13):4246-60. PubMed ID: 22682266 [TBL] [Abstract][Full Text] [Related]
8. Potential for biofilm development in drinking water distribution systems. van der Kooij D J Appl Microbiol; 1998 Dec; 85 Suppl 1():39S-44S. PubMed ID: 21182691 [TBL] [Abstract][Full Text] [Related]
9. Effect of disinfectant residual on the interaction between bacterial growth and assimilable organic carbon in a drinking water distribution system. Li W; Zhang J; Wang F; Qian L; Zhou Y; Qi W; Chen J Chemosphere; 2018 Jul; 202():586-597. PubMed ID: 29597176 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of microbial regrowth potential by assimilable organic carbon in various reclaimed water and distribution systems. Thayanukul P; Kurisu F; Kasuga I; Furumai H Water Res; 2013 Jan; 47(1):225-32. PubMed ID: 23134741 [TBL] [Abstract][Full Text] [Related]
11. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System. Prest EI; Weissbrodt DG; Hammes F; van Loosdrecht MC; Vrouwenvelder JS PLoS One; 2016; 11(10):e0164445. PubMed ID: 27792739 [TBL] [Abstract][Full Text] [Related]
12. Influences of NOM composition and bacteriological characteristics on biological stability in a full-scale drinking water treatment plant. Park JW; Kim HC; Meyer AS; Kim S; Maeng SK Chemosphere; 2016 Oct; 160():189-98. PubMed ID: 27376858 [TBL] [Abstract][Full Text] [Related]
13. Regrowth potential of chlorine-resistant bacteria in drinking water under chloramination. Wu X; Nan J; Shen J; Kang J; Li D; Yan P; Wang W; Wang B; Zhao S; Chen Z J Hazard Mater; 2022 Apr; 428():128264. PubMed ID: 35051770 [TBL] [Abstract][Full Text] [Related]
14. Development of biomass in a drinking water granular active carbon (GAC) filter. Velten S; Boller M; Köster O; Helbing J; Weilenmann HU; Hammes F Water Res; 2011 Dec; 45(19):6347-54. PubMed ID: 21982281 [TBL] [Abstract][Full Text] [Related]
15. Investigation of assimilable organic carbon (AOC) in flemish drinking water. Polanska M; Huysman K; van Keer C Water Res; 2005 Jun; 39(11):2259-66. PubMed ID: 15925396 [TBL] [Abstract][Full Text] [Related]
16. Factors affecting bacterial growth in drinking water distribution system. Lu W; Zhang XJ Biomed Environ Sci; 2005 Apr; 18(2):137-40. PubMed ID: 16001834 [TBL] [Abstract][Full Text] [Related]
17. Determination of an acceptable assimilable organic carbon (AOC) level for biological stability in water distribution systems with minimized chlorine residual. Ohkouchi Y; Ly BT; Ishikawa S; Kawano Y; Itoh S Environ Monit Assess; 2013 Feb; 185(2):1427-36. PubMed ID: 22527469 [TBL] [Abstract][Full Text] [Related]
18. Assessment of the extent of bacterial growth in reverse osmosis system for improving drinking water quality. Park SK; Hu JY J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(8):968-77. PubMed ID: 20512722 [TBL] [Abstract][Full Text] [Related]
19. Abundance and composition of indigenous bacterial communities in a multi-step biofiltration-based drinking water treatment plant. Lautenschlager K; Hwang C; Ling F; Liu WT; Boon N; Köster O; Egli T; Hammes F Water Res; 2014 Oct; 62():40-52. PubMed ID: 24937356 [TBL] [Abstract][Full Text] [Related]
20. Effects of assimilable organic carbon and free chlorine on bacterial growth in drinking water. Liu X; Wang J; Liu T; Kong W; He X; Jin Y; Zhang B PLoS One; 2015; 10(6):e0128825. PubMed ID: 26034988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]