These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 26451977)

  • 21. Investigation of assimilable organic carbon (AOC) and bacterial regrowth in drinking water distribution system.
    Liu W; Wu H; Wang Z; Ong SL; Hu JY; Ng WJ
    Water Res; 2002 Feb; 36(4):891-8. PubMed ID: 11848359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phosphorus limitation on bacterial regrowth in drinking water.
    Sang JQ; Zhang XH; Yu GZ; Wang ZS
    J Environ Sci (China); 2003 Nov; 15(6):773-8. PubMed ID: 14758895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacterial diversity and active biomass in full-scale granular activated carbon filters operated at low water temperatures.
    Kaarela OE; Härkki HA; Palmroth MR; Tuhkanen TA
    Environ Technol; 2015; 36(5-8):681-92. PubMed ID: 25242545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biostability in distribution systems in one city in southern China: characteristics, modeling and control strategy.
    Lu P; Zhang X; Zhang C; Niu Z; Xie S; Chen C
    J Environ Sci (China); 2014 Feb; 26(2):323-31. PubMed ID: 25076523
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Initiating guidance values for novel biological stability parameters in drinking water to control regrowth in the distribution system.
    van der Wielen PWJJ; Brouwer-Hanzens A; Italiaander R; Hijnen WAM
    Sci Total Environ; 2023 May; 871():161930. PubMed ID: 36740059
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks.
    Lautenschlager K; Hwang C; Liu WT; Boon N; Köster O; Vrouwenvelder H; Egli T; Hammes F
    Water Res; 2013 Jun; 47(9):3015-25. PubMed ID: 23557697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Real-time ArcGIS and heterotrophic plate count based chloramine disinfectant control in water distribution system.
    Bai X; Zhi X; Zhu H; Meng M; Zhang M
    Water Res; 2015 Jan; 68():812-20. PubMed ID: 25466639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flow cytometry total cell counts: a field study assessing microbiological water quality and growth in unchlorinated drinking water distribution systems.
    Liu G; Van der Mark EJ; Verberk JQ; Van Dijk JC
    Biomed Res Int; 2013; 2013():595872. PubMed ID: 23819117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of flow cytometry to monitor assimilable organic carbon (AOC) and microbial community changes in water.
    Elhadidy AM; Van Dyke MI; Peldszus S; Huck PM
    J Microbiol Methods; 2016 Nov; 130():154-163. PubMed ID: 27638413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of UV/H2O2 treatment on biofilm formation potential.
    Metz DH; Reynolds K; Meyer M; Dionysiou DD
    Water Res; 2011 Jan; 45(2):497-508. PubMed ID: 20932545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of organic migration and biomass formation on polymeric components in a point-of-use water dispenser.
    Park JW; Park KY; Na Y; Park S; Kim S; Kweon JH; Maeng SK
    Water Res; 2019 Nov; 165():115025. PubMed ID: 31472335
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid and direct estimation of active biomass on granular activated carbon through adenosine tri-phosphate (ATP) determination.
    Velten S; Hammes F; Boller M; Egli T
    Water Res; 2007 May; 41(9):1973-83. PubMed ID: 17343893
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of bromate and assimilable organic carbon from drinking water using granular activated carbon.
    Huang WJ; Peng HS; Peng MY; Chen LY
    Water Sci Technol; 2004; 50(8):73-80. PubMed ID: 15566189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biological stability in drinking water: a regression analysis of influencing factors.
    Lu W; Zhang XJ
    J Environ Sci (China); 2005; 17(3):395-8. PubMed ID: 16083110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of residual chlorine on the interaction between bacterial growth and assimilable organic carbon and biodegradable organic carbon in reclaimed water.
    Ren X; Chen H
    Sci Total Environ; 2021 Jan; 752():141223. PubMed ID: 32898796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of oxalic acid on the regrowth of heterotrophic bacteria in the distributed drinking water.
    Chu C; Lu C
    Chemosphere; 2004 Nov; 57(7):531-9. PubMed ID: 15488914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of an ATP luminescence-based method for assimilable organic carbon determination in reclaimed water.
    Li GQ; Yu T; Wu QY; Lu Y; Hu HY
    Water Res; 2017 Oct; 123():345-352. PubMed ID: 28683375
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanistic and kinetic evaluation of organic disinfection by-product and assimilable organic carbon (AOC) formation during the ozonation of drinking water.
    Hammes F; Salhi E; Köster O; Kaiser HP; Egli T; von Gunten U
    Water Res; 2006 Jul; 40(12):2275-86. PubMed ID: 16777174
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluating the biosafety of conventional and O
    Liao X; Zou R; Chen C; Yuan B; Zhou Z; Zhang X
    Environ Technol; 2018 Jan; 39(2):221-230. PubMed ID: 28274190
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assimilable organic carbon cycling within drinking water distribution systems.
    Pick FC; Fish KE; Boxall JB
    Water Res; 2021 Jun; 198():117147. PubMed ID: 33962239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.