These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

857 related articles for article (PubMed ID: 26452013)

  • 1. Biological versus mineralogical chromium reduction: potential for reoxidation by manganese oxide.
    Butler EC; Chen L; Hansel CM; Krumholz LR; Elwood Madden AS; Lan Y
    Environ Sci Process Impacts; 2015 Nov; 17(11):1930-40. PubMed ID: 26452013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromium(iii) oxidation by biogenic manganese oxides with varying structural ripening.
    Tang Y; Webb SM; Estes ER; Hansel CM
    Environ Sci Process Impacts; 2014 Sep; 16(9):2127-36. PubMed ID: 25079661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction mechanism of dissolved Cr(VI) and manganite in the presence of goethite coating.
    Luo Y; Ding J; Hai J; Tan W; Hao R; Qiu G
    Environ Pollut; 2020 May; 260():114046. PubMed ID: 32014747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals.
    Joe-Wong C; Brown GE; Maher K
    Environ Sci Technol; 2017 Sep; 51(17):9817-9825. PubMed ID: 28783317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of Cr(III) on birnessite surfaces: The effect of goethite and kaolinite.
    Zhong L; Yang J; Liu L; Xing B
    J Environ Sci (China); 2015 Nov; 37():8-14. PubMed ID: 26574083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new pathway for hexavalent chromium formation in soil: Fire-induced alteration of iron oxides.
    Burton ED; Choppala G; Karimian N; Johnston SG
    Environ Pollut; 2019 Apr; 247():618-625. PubMed ID: 30711817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of oxidation of Cr(III) in aqueous ions, complex ions and insoluble compounds by manganese-bearing mineral (birnessite).
    Dai R; Liu J; Yu C; Sun R; Lan Y; Mao JD
    Chemosphere; 2009 Jul; 76(4):536-41. PubMed ID: 19342077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. XANES evidence for oxidation of Cr(III) to Cr(VI) by Mn-oxides in a lateritic regolith developed on serpentinized ultramafic rocks of New Caledonia.
    Fandeur D; Juillot F; Morin G; Olivi L; Cognigni A; Webb SM; Ambrosi JP; Fritsch E; Guyot F; Brown GE
    Environ Sci Technol; 2009 Oct; 43(19):7384-90. PubMed ID: 19848150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron(III) minerals and anthraquinone-2,6-disulfonate (AQDS) synergistically enhance bioreduction of hexavalent chromium by Shewanella oneidensis MR-1.
    Meng Y; Zhao Z; Burgos WD; Li Y; Zhang B; Wang Y; Liu W; Sun L; Lin L; Luan F
    Sci Total Environ; 2018 Nov; 640-641():591-598. PubMed ID: 29870936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cr(VI) Formation related to Cr(III)-muscovite and birnessite interactions in ultramafic environments.
    Rajapaksha AU; Vithanage M; Ok YS; Oze C
    Environ Sci Technol; 2013 Sep; 47(17):9722-9. PubMed ID: 23952582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consecutive reduction of Cr(VI) by Fe(II) formed through photo-reaction of iron-dissolved organic matter originated from biochar.
    Kim HB; Kim JG; Kim SH; Kwon EE; Baek K
    Environ Pollut; 2019 Oct; 253():231-238. PubMed ID: 31310873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromium(III) oxidation by three poorly-crystalline manganese(IV) oxides. 1. Chromium(III)-oxidizing capacity.
    Landrot G; Ginder-Vogel M; Livi K; Fitts JP; Sparks DL
    Environ Sci Technol; 2012 Nov; 46(21):11594-600. PubMed ID: 23050871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manganese(II)-catalyzed and clay-minerals-mediated reduction of chromium(VI) by citrate.
    Sarkar B; Naidu R; Krishnamurti GS; Megharaj M
    Environ Sci Technol; 2013; 47(23):13629-36. PubMed ID: 24195488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of natural Fe(II)-bearing minerals in chemoautotrophic chromium (VI) bio-reduction in groundwater.
    Lu J; Zhang B; He C; Borthwick AGL
    J Hazard Mater; 2020 May; 389():121911. PubMed ID: 31879105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles.
    Li Y; Wang W; Zhou L; Liu Y; Mirza ZA; Lin X
    Chemosphere; 2017 Feb; 169():131-138. PubMed ID: 27870934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of hexavalent chromium in soil and groundwater using synthetic pyrite particles.
    Wang T; Qian T; Huo L; Li Y; Zhao D
    Environ Pollut; 2019 Dec; 255(Pt 1):112992. PubMed ID: 31541830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined abiotic and biotic in-situ reduction of hexavalent chromium in groundwater using nZVI and whey: A remedial pilot test.
    Němeček J; Pokorný P; Lacinová L; Černík M; Masopustová Z; Lhotský O; Filipová A; Cajthaml T
    J Hazard Mater; 2015 Dec; 300():670-679. PubMed ID: 26292054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of iron/aluminum bimetallic nanoparticle system for chromium-contaminated groundwater remediation.
    Ou JH; Sheu YT; Tsang DCW; Sun YJ; Kao CM
    Chemosphere; 2020 Oct; 256():127158. PubMed ID: 32470741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromium(III) oxidation by three poorly crystalline manganese(IV) oxides. 2. Solid phase analyses.
    Landrot G; Ginder-Vogel M; Livi K; Fitts JP; Sparks DL
    Environ Sci Technol; 2012 Nov; 46(21):11601-9. PubMed ID: 23050862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.