These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
857 related articles for article (PubMed ID: 26452013)
21. Stabilized green rusts for aqueous Cr(VI) removal: Fast kinetics, high iron utilization rate and anti-acidification. Zhao J; Xiong S; Ai J; Wu J; Huang LZ; Yin W Chemosphere; 2021 Jan; 262():127853. PubMed ID: 32777616 [TBL] [Abstract][Full Text] [Related]
22. Geogenic Cr oxidation on the surface of mafic minerals and the hydrogeological conditions influencing hexavalent chromium concentrations in groundwater. Kazakis N; Kantiranis N; Voudouris KS; Mitrakas M; Kaprara E; Pavlou A Sci Total Environ; 2015 May; 514():224-38. PubMed ID: 25666283 [TBL] [Abstract][Full Text] [Related]
23. Rates of Cr(VI) Generation from Cr Pan C; Liu H; Catalano JG; Qian A; Wang Z; Giammar DE Environ Sci Technol; 2017 Nov; 51(21):12416-12423. PubMed ID: 29043792 [TBL] [Abstract][Full Text] [Related]
24. [Kinetic characteristics of Cr(III) oxidation by delta-MnO2]. Dong CX; Dai RN; Xiong JJ Huan Jing Ke Xue; 2010 May; 31(5):1395-401. PubMed ID: 20623882 [TBL] [Abstract][Full Text] [Related]
25. [Effects of Mn(III) on oxidation of Cr(III) with birnessites]. Tan JF; Qiu GH; Liu F; Tan WF; Feng XH Huan Jing Ke Xue; 2009 Sep; 30(9):2779-85. PubMed ID: 19927840 [TBL] [Abstract][Full Text] [Related]
26. Reductive sequestration of chromate by hierarchical FeS@Fe(0) particles. Du J; Bao J; Lu C; Werner D Water Res; 2016 Oct; 102():73-81. PubMed ID: 27322748 [TBL] [Abstract][Full Text] [Related]
27. Incorporation of zero valent iron nanoparticles in the matrix of cationic resin beads for the remediation of Cr(VI) contaminated waters. Toli A; Chalastara K; Mystrioti C; Xenidis A; Papassiopi N Environ Pollut; 2016 Jul; 214():419-429. PubMed ID: 27108046 [TBL] [Abstract][Full Text] [Related]
28. Cr(vi) uptake and reduction by biogenic iron (oxyhydr)oxides. Whitaker AH; Peña J; Amor M; Duckworth OW Environ Sci Process Impacts; 2018 Jul; 20(7):1056-1068. PubMed ID: 29922797 [TBL] [Abstract][Full Text] [Related]
29. Adsorption of hexavalent chromium from water using manganese-aluminum coated sand: Kinetics, equilibrium, effect of pH and ionic strength. Punia S; Wu L; Khodadoust AP J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(3):334-345. PubMed ID: 33560900 [TBL] [Abstract][Full Text] [Related]
30. Influence of various organic molecules on the reduction of hexavalent chromium mediated by zero-valent iron. Rivero-Huguet M; Marshall WD Chemosphere; 2009 Aug; 76(9):1240-8. PubMed ID: 19559460 [TBL] [Abstract][Full Text] [Related]
31. Chromium-microorganism interactions in soils: remediation implications. Kamaludeen SP; Megharaj M; Juhasz AL; Sethunathan N; Naidu R Rev Environ Contam Toxicol; 2003; 178():93-164. PubMed ID: 12868782 [TBL] [Abstract][Full Text] [Related]
32. Influence factors for the oxidation of pyrite by oxygen and birnessite in aqueous systems. Qiu G; Luo Y; Chen C; Lv Q; Tan W; Liu F; Liu C J Environ Sci (China); 2016 Jul; 45():164-76. PubMed ID: 27372130 [TBL] [Abstract][Full Text] [Related]
33. Removal of hexavalent chromium from contaminated ground water using zero-valent iron nanoparticles. Singh R; Misra V; Singh RP Environ Monit Assess; 2012 Jun; 184(6):3643-51. PubMed ID: 21769560 [TBL] [Abstract][Full Text] [Related]
34. Cr(VI)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material: Environmental factors and effectiveness. Liu Y; Mou H; Chen L; Mirza ZA; Liu L J Hazard Mater; 2015 Nov; 298():83-90. PubMed ID: 26026959 [TBL] [Abstract][Full Text] [Related]
35. Vinegar residue supported nanoscale zero-valent iron: Remediation of hexavalent chromium in soil. Pei G; Zhu Y; Wen J; Pei Y; Li H Environ Pollut; 2020 Jan; 256():113407. PubMed ID: 31672374 [TBL] [Abstract][Full Text] [Related]
36. Nanoencapsulation of hexavalent chromium with nanoscale zero-valent iron: High resolution chemical mapping of the passivation layer. Huang XY; Ling L; Zhang WX J Environ Sci (China); 2018 May; 67():4-13. PubMed ID: 29778172 [TBL] [Abstract][Full Text] [Related]
37. Simulated reactive zone with emulsified vegetable oil for the long-term remediation of Cr(VI)-contaminated aquifer: dynamic evolution of geological parameters and groundwater microbial community. Dong J; Yu J; Bao Q Environ Sci Pollut Res Int; 2018 Dec; 25(34):34392-34402. PubMed ID: 30306441 [TBL] [Abstract][Full Text] [Related]
38. Kinetics and Mechanisms of Cr(VI) Formation via the Oxidation of Cr(III) Solid Phases by Chlorine in Drinking Water. Chebeir M; Liu H Environ Sci Technol; 2016 Jan; 50(2):701-10. PubMed ID: 26647114 [TBL] [Abstract][Full Text] [Related]
39. Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles. Wang Q; Qian H; Yang Y; Zhang Z; Naman C; Xu X J Contam Hydrol; 2010 May; 114(1-4):35-42. PubMed ID: 20304518 [TBL] [Abstract][Full Text] [Related]
40. Use of dithionite to extend the reactive lifetime of nanoscale zero-valent iron treatment systems. Xie Y; Cwiertny DM Environ Sci Technol; 2010 Nov; 44(22):8649-8655. PubMed ID: 20968304 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]