BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26452192)

  • 1. Nano-QSAR: Model of mutagenicity of fullerene as a mathematical function of different conditions.
    Toropova AP; Toropov AA; Veselinović AM; Veselinović JB; Benfenati E; Leszczynska D; Leszczynski J
    Ecotoxicol Environ Saf; 2016 Feb; 124():32-36. PubMed ID: 26452192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal descriptor as a translator of eclectic data into endpoint prediction: mutagenicity of fullerene as a mathematical function of conditions.
    Toropov AA; Toropova AP
    Chemosphere; 2014 Jun; 104():262-4. PubMed ID: 24246220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasi-SMILES and nano-QFAR: united model for mutagenicity of fullerene and MWCNT under different conditions.
    Toropov AA; Toropova AP
    Chemosphere; 2015 Nov; 139():18-22. PubMed ID: 26026259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutagenicity: QSAR - quasi-QSAR - nano-QSAR.
    Toropova AP; Toropov AA
    Mini Rev Med Chem; 2015; 15(8):608-21. PubMed ID: 25694078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-QSAR in cell biology: Model of cell viability as a mathematical function of available eclectic data.
    Toropova AP; Toropov AA
    J Theor Biol; 2017 Mar; 416():113-118. PubMed ID: 28087422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutagenicity, anticancer activity and blood brain barrier: similarity and dissimilarity of molecular alerts.
    Toropov AA; Toropova AP; Benfenati E; Salmona M
    Toxicol Mech Methods; 2018 Jun; 28(5):321-327. PubMed ID: 29281931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasi-QSAR for mutagenic potential of multi-walled carbon-nanotubes.
    Toropov AA; Toropova AP
    Chemosphere; 2015 Apr; 124():40-6. PubMed ID: 25465947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenicity of carbon tetrachloride and chloroform in Salmonella typhimurium TA98, TA100, TA1535, and TA1537, and Escherichia coli WP2uvrA/pKM101 and WP2/pKM101, using a gas exposure method.
    Araki A; Kamigaito N; Sasaki T; Matsushima T
    Environ Mol Mutagen; 2004; 43(2):128-33. PubMed ID: 14991753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro and in vivo genotoxicity tests on fullerene C60 nanoparticles.
    Shinohara N; Matsumoto K; Endoh S; Maru J; Nakanishi J
    Toxicol Lett; 2009 Dec; 191(2-3):289-96. PubMed ID: 19772904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation intensity index: Building up models for mutagenicity of silver nanoparticles.
    Toropov AA; Toropova AP
    Sci Total Environ; 2020 Oct; 737():139720. PubMed ID: 32554036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CORAL and Nano-QFAR: Quantitative feature - Activity relationships (QFAR) for bioavailability of nanoparticles (ZnO, CuO, Co
    Toropova AP; Toropov AA; Leszczynska D; Leszczynski J
    Ecotoxicol Environ Saf; 2017 May; 139():404-407. PubMed ID: 28192776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of the index of ideality of correlation to improve predictive potential for biochemical endpoints.
    Toropov AA; Toropova AP
    Toxicol Mech Methods; 2019 Jan; 29(1):43-52. PubMed ID: 30064284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasi-SMILES: quantitative structure-activity relationships to predict anticancer activity.
    Toropova AP; Toropov AA
    Mol Divers; 2019 May; 23(2):403-412. PubMed ID: 30306392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CORAL: Predictive models for cytotoxicity of functionalized nanozeolites based on quasi-SMILES.
    Leone C; Bertuzzi EE; Toropova AP; Toropov AA; Benfenati E
    Chemosphere; 2018 Nov; 210():52-56. PubMed ID: 29986223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions.
    Toropova AP; Toropov AA; Rallo R; Leszczynska D; Leszczynski J
    Ecotoxicol Environ Saf; 2015 Feb; 112():39-45. PubMed ID: 25463851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of Quasi-SMILES and Monte Carlo Optimization to Develop Quantitative Feature Property/Activity Relationships (QFPR/QFAR) for Nanomaterials.
    Toropov AA; Rallo R; Toropova AP
    Curr Top Med Chem; 2015; 15(18):1837-44. PubMed ID: 25961527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QSAR as a random event: modeling of nanoparticles uptake in PaCa2 cancer cells.
    Toropov AA; Toropova AP; Puzyn T; Benfenati E; Gini G; Leszczynska D; Leszczynski J
    Chemosphere; 2013 Jun; 92(1):31-7. PubMed ID: 23566368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasi-SMILES-Based Nano-Quantitative Structure-Activity Relationship Model to Predict the Cytotoxicity of Multiwalled Carbon Nanotubes to Human Lung Cells.
    Trinh TX; Choi JS; Jeon H; Byun HG; Yoon TH; Kim J
    Chem Res Toxicol; 2018 Mar; 31(3):183-190. PubMed ID: 29439565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanomaterials: Quasi-SMILES as a flexible basis for regulation and environmental risk assessment.
    Toropova AP; Toropov AA
    Sci Total Environ; 2022 Jun; 823():153747. PubMed ID: 35149067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. coral Software: QSAR for Anticancer Agents.
    Benfenati E; Toropov AA; Toropova AP; Manganaro A; Gonella Diaza R
    Chem Biol Drug Des; 2011 Jun; 77(6):471-6. PubMed ID: 21435183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.