BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 26452269)

  • 1. Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy.
    Diogo R; Esteve-Altava B; Smith C; Boughner JC; Rasskin-Gutman D
    PLoS One; 2015; 10(10):e0140030. PubMed ID: 26452269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First anatomical network analysis of fore- and hindlimb musculoskeletal modularity in bonobos, common chimpanzees, and humans.
    Diogo R; Molnar JL; Rolian C; Esteve-Altava B
    Sci Rep; 2018 May; 8(1):6885. PubMed ID: 29720670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards the resolution of a long-standing evolutionary question: muscle identity and attachments are mainly related to topological position and not to primordium or homeotic identity of digits.
    Diogo R; Walsh S; Smith C; Ziermann JM; Abdala V
    J Anat; 2015 Jun; 226(6):523-9. PubMed ID: 25851747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First use of anatomical networks to study modularity and integration of heads, forelimbs and hindlimbs in abnormal anencephalic and cyclopic vs normal human development.
    Diogo R; Ziermann JM; Smith C; Alghamdi M; Fuentes JSM; Duerinckx A
    Sci Rep; 2019 May; 9(1):7821. PubMed ID: 31127169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A detailed musculoskeletal study of a fetus with anencephaly and spina bifida (craniorachischisis), and comparison with other cases of human congenital malformations.
    Alghamdi MA; Ziermann JM; Gregg L; Diogo R
    J Anat; 2017 Jun; 230(6):842-858. PubMed ID: 28266009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross- and triple-ratios of human body parts during development.
    Lundh T; Udagawa J; Hänel SE; Otani H
    Anat Rec (Hoboken); 2011 Aug; 294(8):1360-9. PubMed ID: 21714106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle variants of the upper and lower limb (with anatomical correlation).
    Martinoli C; Perez MM; Padua L; Valle M; Capaccio E; Altafini L; Michaud J; Tagliafico A
    Semin Musculoskelet Radiol; 2010 Jun; 14(2):106-21. PubMed ID: 20486022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specialize or risk disappearance - empirical evidence of anisomerism based on comparative and developmental studies of gnathostome head and limb musculature.
    Diogo R; Ziermann JM; Linde-Medina M
    Biol Rev Camb Philos Soc; 2015 Aug; 90(3):964-78. PubMed ID: 25174804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scientific basis of the OCRA method for risk assessment of biomechanical overload of upper limb, as preferred method in ISO standards on biomechanical risk factors.
    Colombini D; Occhipinti E
    Scand J Work Environ Health; 2018 Jul; 44(4):436-438. PubMed ID: 29961081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anthropometric correlations between parts of the upper and lower limb: models for personal identification in a Sudanese population.
    Ahmed AA
    Forensic Sci Med Pathol; 2016 Sep; 12(3):257-66. PubMed ID: 27379609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges in identifying and interpreting organizational modules in morphology.
    Esteve-Altava B
    J Morphol; 2017 Jul; 278(7):960-974. PubMed ID: 28466514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upper and Lower Limb Muscle Architecture of a 104 Year-Old Cadaver.
    Ruggiero M; Cless D; Infantolino B
    PLoS One; 2016; 11(12):e0162963. PubMed ID: 28033339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. When right differs from left: human limb directional asymmetry emerges during very early development.
    Van Dongen S; Galis F; Ten Broek C; Heikinheimo K; Wijnaendts LC; Delen S; Bots J
    Laterality; 2014; 19(5):591-601. PubMed ID: 24579655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subject-specific musculoskeletal model of the lower limb in a lying and standing position.
    Hausselle J; Assi A; El Helou A; Jolivet E; Pillet H; Dion E; Bonneau D; Skalli W
    Comput Methods Biomech Biomed Engin; 2014 Apr; 17(5):480-7. PubMed ID: 22731619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New, puzzling insights from comparative myological studies on the old and unsolved forelimb/hindlimb enigma.
    Diogo R; Linde-Medina M; Abdala V; Ashley-Ross MA
    Biol Rev Camb Philos Soc; 2013 Feb; 88(1):196-214. PubMed ID: 22958734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomical comparison across heads, fore- and hindlimbs in mammals using network models.
    Ziermann JM; Boughner JC; Esteve-Altava B; Diogo R
    J Anat; 2021 Jul; 239(1):12-31. PubMed ID: 33629373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Musculoskeletal study of cebocephalic and cyclopic lamb heads illuminates links between normal and abnormal development, evolution and human pathologies.
    Diogo R; Razmadze D; Siomava N; Douglas N; Fuentes JSM; Duerinckx A
    Sci Rep; 2019 Jan; 9(1):991. PubMed ID: 30700788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of musculoskeletal networks of the primate forelimb.
    Molnar J; Esteve-Altava B; Rolian C; Diogo R
    Sci Rep; 2017 Sep; 7(1):10520. PubMed ID: 28874673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships between power and strength of the upper and lower limb muscles and throwing velocity in male handball players.
    Chelly MS; Hermassi S; Shephard RJ
    J Strength Cond Res; 2010 Jun; 24(6):1480-7. PubMed ID: 20508448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid and flexible whole body postural responses are evoked from perturbations to the upper limb during goal-directed reaching.
    Lowrey CR; Nashed JY; Scott SH
    J Neurophysiol; 2017 Mar; 117(3):1070-1083. PubMed ID: 28003415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.