BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26452368)

  • 1. Growth plate cartilage shows different strain patterns in response to static versus dynamic mechanical modulation.
    Kaviani R; Londono I; Parent S; Moldovan F; Villemure I
    Biomech Model Mechanobiol; 2016 Aug; 15(4):933-46. PubMed ID: 26452368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in growth plate extracellular matrix composition and biomechanics following in vitro static versus dynamic mechanical modulation.
    Kaviani R; Londono I; Parent S; Moldovan F; Villemure I
    J Musculoskelet Neuronal Interact; 2018 Mar; 18(1):81-91. PubMed ID: 29504583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compressive mechanical modulation alters the viability of growth plate chondrocytes in vitro.
    Kaviani R; Londono I; Parent S; Moldovan F; Villemure I
    J Orthop Res; 2015 Nov; 33(11):1587-93. PubMed ID: 26019113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stress relaxation of swine growth plate in semi-confined compression: depth dependent tissue deformational behavior versus extracellular matrix composition and collagen fiber organization.
    Amini S; Mortazavi F; Sun J; Levesque M; Hoemann CD; Villemure I
    Biomech Model Mechanobiol; 2013 Jan; 12(1):67-78. PubMed ID: 22446833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale modeling of growth plate cartilage mechanobiology.
    Gao J; Williams JL; Roan E
    Biomech Model Mechanobiol; 2017 Apr; 16(2):667-679. PubMed ID: 27770213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo dynamic loading reduces bone growth without histomorphometric changes of the growth plate.
    Ménard AL; Grimard G; Valteau B; Londono I; Moldovan F; Villemure I
    J Orthop Res; 2014 Sep; 32(9):1129-36. PubMed ID: 24902946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone growth resumption following in vivo static and dynamic compression removals on rats.
    Ménard AL; Grimard G; Londono I; Beaudry F; Vachon P; Moldovan F; Villemure I
    Bone; 2015 Dec; 81():662-668. PubMed ID: 26416149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth plate explants respond differently to in vitro static and dynamic loadings.
    Sergerie K; Parent S; Beauchemin PF; Londoño I; Moldovan F; Villemure I
    J Orthop Res; 2011 Apr; 29(4):473-80. PubMed ID: 21337387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ deformation of growth plate chondrocytes in stress-controlled static vs dynamic compression.
    Zimmermann EA; Bouguerra S; Londoño I; Moldovan F; Aubin CÉ; Villemure I
    J Biomech; 2017 May; 56():76-82. PubMed ID: 28365062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo dynamic compression has less detrimental effect than static compression on newly formed bone of a rat caudal vertebra.
    Benoit A; Mustafy T; Londono I; Grimard G; Aubin CE; Villemure I
    J Musculoskelet Neuronal Interact; 2016 Sep; 16(3):211-20. PubMed ID: 27609036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth plate mechanics and mechanobiology. A survey of present understanding.
    Villemure I; Stokes IA
    J Biomech; 2009 Aug; 42(12):1793-803. PubMed ID: 19540500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Static versus dynamic loading in the mechanical modulation of vertebral growth.
    Akyuz E; Braun JT; Brown NA; Bachus KN
    Spine (Phila Pa 1976); 2006 Dec; 31(25):E952-8. PubMed ID: 17139211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo dynamic bone growth modulation is less detrimental but as effective as static growth modulation.
    Valteau B; Grimard G; Londono I; Moldovan F; Villemure I
    Bone; 2011 Nov; 49(5):996-1004. PubMed ID: 21784187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zone-specific micromechanical properties of the extracellular matrices of growth plate cartilage.
    Radhakrishnan P; Lewis NT; Mao JJ
    Ann Biomed Eng; 2004 Feb; 32(2):284-91. PubMed ID: 15008376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of appositional and longitudinal bone growth in the rat ulna by applied static and dynamic force.
    Robling AG; Duijvelaar KM; Geevers JV; Ohashi N; Turner CH
    Bone; 2001 Aug; 29(2):105-13. PubMed ID: 11502470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of mechanical loading on the mRNA expression of growth-plate cells.
    Villemure I; Chung MA; Seck CS; Kimm MH; Matyas JR; Duncan NA
    Stud Health Technol Inform; 2002; 91():114-8. PubMed ID: 15457706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of cold storage and freezing on the biomechanical properties of swine growth plate explants.
    Ménard AL; Soulisse C; Raymond P; Londono I; Villemure I
    J Biomech Eng; 2014 Apr; 136(4):. PubMed ID: 24337235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loading and boundary condition influences in a poroelastic finite element model of cartilage stresses in a triaxial compression bioreactor.
    Kallemeyn NA; Grosland NM; Pedersen DR; Martin JA; Brown TD
    Iowa Orthop J; 2006; 26():5-16. PubMed ID: 16789442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and mechanical properties of the proliferative zone of the developing murine growth plate cartilage assessed by atomic force microscopy.
    Prein C; Warmbold N; Farkas Z; Schieker M; Aszodi A; Clausen-Schaumann H
    Matrix Biol; 2016 Mar; 50():1-15. PubMed ID: 26454027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image registration demonstrates the growth plate has a variable affect on vertebral strain.
    Hardisty MR; Akens M; Yee AJ; Whyne CM
    Ann Biomed Eng; 2010 Sep; 38(9):2948-55. PubMed ID: 20443059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.