BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 26452497)

  • 1. Continuous colorimetric screening assays for the detection of specific L- or D-α-amino acid transaminases in enzyme libraries.
    Heuson E; Petit JL; Debard A; Job A; Charmantray F; de Berardinis V; Gefflaut T
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):397-408. PubMed ID: 26452497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous High-Throughput Colorimetric Assays for α-Transaminases.
    Heuson E; Petit JL; Charmantray F; de Bérardinis V; Gefflaut T
    Methods Mol Biol; 2018; 1685():233-245. PubMed ID: 29086312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rapid, sensitive colorimetric assay for the high-throughput screening of transaminases in liquid or solid-phase.
    Baud D; Ladkau N; Moody TS; Ward JM; Hailes HC
    Chem Commun (Camb); 2015 Dec; 51(97):17225-8. PubMed ID: 26458082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-throughput assay for screening L- or D-amino acid specific aminotransferase mutant libraries.
    Walton CJ; Chica RA
    Anal Biochem; 2013 Oct; 441(2):190-8. PubMed ID: 23871995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous colorimetric screening assay for detection of d-amino acid aminotransferase mutants displaying altered substrate specificity.
    Barber JE; Damry AM; Calderini GF; Walton CJ; Chica RA
    Anal Biochem; 2014 Oct; 463():23-30. PubMed ID: 24949900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous colorimetric assay that enables high-throughput screening of N-acetylamino acid racemases.
    Sánchez-Carrón G; Fleming T; Holt-Tiffin KE; Campopiano DJ
    Anal Chem; 2015 Apr; 87(7):3923-8. PubMed ID: 25716802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The rapid high-throughput screening of ω-transaminases via a colorimetric method using aliphatic α-diketones as amino acceptors.
    Tang K; Dong J; Zheng Z; Zhang T; Pan H; Jia H; Li Y; Wei P
    Anal Bioanal Chem; 2023 Apr; 415(9):1733-1740. PubMed ID: 36840810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 1-step microplate method for assessing the substrate range of l-α-amino acid aminotransferase.
    Bommer M; Ward JM
    Enzyme Microb Technol; 2013 Apr; 52(4-5):218-25. PubMed ID: 23540922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-Phase Agar Plate Assay for Screening Amine Transaminases.
    Weiß MS; Bornscheuer UT; Höhne M
    Methods Mol Biol; 2018; 1685():283-296. PubMed ID: 29086316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active site model of (R)-selective ω-transaminase and its application to the production of D-amino acids.
    Park ES; Dong JY; Shin JS
    Appl Microbiol Biotechnol; 2014 Jan; 98(2):651-60. PubMed ID: 23576035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning-independent expression and analysis of omega-transaminases by use of a cell-free protein synthesis system.
    Kwon YC; Lee KH; Kim HC; Han K; Seo JH; Kim BG; Kim DM
    Appl Environ Microbiol; 2010 Sep; 76(18):6295-8. PubMed ID: 20656866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Asymmetric synthesis of aromatic L-amino acids catalyzed by transaminase].
    Xia W; Sun Y; Min C; Han W; Wu S
    Sheng Wu Gong Cheng Xue Bao; 2012 Nov; 28(11):1346-58. PubMed ID: 23457787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A colorimetric assay optimization for high-throughput screening of dihydroorotase by detecting ureido groups.
    Rice AJ; Truong L; Johnson ME; Lee H
    Anal Biochem; 2013 Oct; 441(1):87-94. PubMed ID: 23769705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric synthesis of L-homophenylalanine by equilibrium-shift using recombinant aromatic L-amino acid transaminase.
    Cho BK; Seo JH; Kang TW; Kim BG
    Biotechnol Bioeng; 2003 Jul; 83(2):226-34. PubMed ID: 12768628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Rapid and High-Throughput Assay for the Estimation of Conversions of Ene-Reductase-Catalysed Reactions.
    Forchin MC; Crotti M; Gatti FG; Parmeggiani F; Brenna E; Monti D
    Chembiochem; 2015 Jul; 16(11):1571-3. PubMed ID: 26033160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of non-proteinogenic amino acids from α-keto acid precursors with recombinant Corynebacterium glutamicum.
    Kim JY; Lee YA; Wittmann C; Park JB
    Biotechnol Bioeng; 2013 Nov; 110(11):2846-55. PubMed ID: 23737264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass spectrometry imaging-based assays for aminotransferase activity reveal a broad substrate spectrum for a previously uncharacterized enzyme.
    de Raad M; Koper K; Deng K; Bowen BP; Maeda HA; Northen TR
    J Biol Chem; 2023 Mar; 299(3):102939. PubMed ID: 36702250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an aminotransferase-driven biocatalytic cascade for deracemization of d,l-phosphinothricin.
    Liu HL; Wu JM; Deng XT; Yu L; Yi PH; Liu ZQ; Xue YP; Jin LQ; Zheng YG
    Biotechnol Bioeng; 2023 Oct; 120(10):2940-2952. PubMed ID: 37227020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully automatized high-throughput enzyme library screening using a robotic platform.
    Dörr M; Fibinger MP; Last D; Schmidt S; Santos-Aberturas J; Böttcher D; Hummel A; Vickers C; Voss M; Bornscheuer UT
    Biotechnol Bioeng; 2016 Jul; 113(7):1421-32. PubMed ID: 26724475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel transaminases from thermophiles: from discovery to application.
    Cárdenas-Fernández M; Sinclair O; Ward JM
    Microb Biotechnol; 2022 Jan; 15(1):305-317. PubMed ID: 34713952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.