These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 26452587)

  • 1. Chloroperoxidase-Catalyzed Epoxidation of Cis-β-Methylstyrene: NH-S Hydrogen Bonds and Proximal Helix Dipole Change the Catalytic Mechanism and Significantly Lower the Reaction Barrier.
    Morozov AN; Pardillo AD; Chatfield DC
    J Phys Chem B; 2015 Nov; 119(45):14350-63. PubMed ID: 26452587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloroperoxidase-catalyzed epoxidation of cis-β-methylstyrene: distal pocket flexibility tunes catalytic reactivity.
    Morozov AN; Chatfield DC
    J Phys Chem B; 2012 Nov; 116(43):12905-14. PubMed ID: 23020548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proximal Pocket Hydrogen Bonds Significantly Influence the Mechanism of Chloroperoxidase Compound I Formation.
    Pardillo AD; Morozov AN; Chatfield DC
    J Phys Chem B; 2015 Oct; 119(39):12590-602. PubMed ID: 26339752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How the Proximal Pocket May Influence the Enantiospecificities of Chloroperoxidase-Catalyzed Epoxidations of Olefins.
    Morozov AN; Chatfield DC
    Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27517911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proximal Pocket Controls Alkene Oxidation Selectivity of Cytochrome P450 and Chloroperoxidase toward Small, Nonpolar Substrates.
    Chatfield DC; Morozov AN
    J Phys Chem B; 2018 Aug; 122(32):7828-7838. PubMed ID: 30052045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantiospecificity of chloroperoxidase-catalyzed epoxidation: biased molecular dynamics study of a cis-β-methylstyrene/chloroperoxidase-compound I complex.
    Morozov AN; D'Cunha C; Alvarez CA; Chatfield DC
    Biophys J; 2011 Feb; 100(4):1066-75. PubMed ID: 21320452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereochemistry of the chloroperoxidase active site: crystallographic and molecular-modeling studies.
    Sundaramoorthy M; Terner J; Poulos TL
    Chem Biol; 1998 Sep; 5(9):461-73. PubMed ID: 9751642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlorinations catalyzed by chloroperoxidase occur via diffusible intermediate(s) and the reaction components play multiple roles in the overall process.
    Murali Manoj K
    Biochim Biophys Acta; 2006 Aug; 1764(8):1325-39. PubMed ID: 16870515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significantly shorter Fe-S bond in cytochrome P450-I is consistent with greater reactivity relative to chloroperoxidase.
    Krest CM; Silakov A; Rittle J; Yosca TH; Onderko EL; Calixto JC; Green MT
    Nat Chem; 2015 Sep; 7(9):696-702. PubMed ID: 26291940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structure of chloroperoxidase: a heme peroxidase--cytochrome P450 functional hybrid.
    Sundaramoorthy M; Terner J; Poulos TL
    Structure; 1995 Dec; 3(12):1367-77. PubMed ID: 8747463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum mechanical/molecular mechanical study on the mechanisms of compound I formation in the catalytic cycle of chloroperoxidase: an overview on heme enzymes.
    Chen H; Hirao H; Derat E; Schlichting I; Shaik S
    J Phys Chem B; 2008 Aug; 112(31):9490-500. PubMed ID: 18597525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A kinetic epoxidation assay for chloroperoxidase.
    Manoj KM; Yi X; Rai GP; Hager LP
    Biochem Biophys Res Commun; 1999 Dec; 266(2):301-3. PubMed ID: 10600497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Turnover for the P450 119 Peroxygenase-Catalyzed Asymmetric Epoxidation of Styrenes by Random Mutagenesis.
    Wang L; Wei S; Pan X; Liu P; Du X; Zhang C; Pu L; Wang Q
    Chemistry; 2018 Feb; 24(11):2741-2749. PubMed ID: 29216409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1.
    Stare J; Henson NJ; Eckert J
    J Chem Inf Model; 2009 Apr; 49(4):833-46. PubMed ID: 19267473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel interface-binding chloroperoxidase for interfacial epoxidation of styrene.
    Zhu G; Wang P
    J Biotechnol; 2005 May; 117(2):195-202. PubMed ID: 15823408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isotope effects and the nature of enantioselectivity in the shi epoxidation. The importance of asynchronicity.
    Singleton DA; Wang Z
    J Am Chem Soc; 2005 May; 127(18):6679-85. PubMed ID: 15869289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replacement of the proximal heme thiolate ligand in chloroperoxidase with a histidine residue.
    Yi X; Mroczko M; Manoj KM; Wang X; Hager LP
    Proc Natl Acad Sci U S A; 1999 Oct; 96(22):12412-7. PubMed ID: 10535936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What factors influence the ratio of C-H hydroxylation versus C=C epoxidation by a nonheme cytochrome P450 biomimetic?
    de Visser SP
    J Am Chem Soc; 2006 Dec; 128(49):15809-18. PubMed ID: 17147391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic and QM/MM investigations of Chloroperoxidase catalyzed degradation of orange G.
    Zhang R; He Q; Huang Y; Wang X
    Arch Biochem Biophys; 2016 Apr; 596():1-9. PubMed ID: 26926259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes.
    de Visser SP; Shaik S
    J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.