BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 26452614)

  • 1. Dendritic Spine Instability in a Mouse Model of CDKL5 Disorder Is Rescued by Insulin-like Growth Factor 1.
    Della Sala G; Putignano E; Chelini G; Melani R; Calcagno E; Michele Ratto G; Amendola E; Gross CT; Giustetto M; Pizzorusso T
    Biol Psychiatry; 2016 Aug; 80(4):302-311. PubMed ID: 26452614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A GABA
    Gennaccaro L; Fuchs C; Loi M; Roncacè V; Trazzi S; Ait-Bali Y; Galvani G; Berardi AC; Medici G; Tassinari M; Ren E; Rimondini R; Giustetto M; Aicardi G; Ciani E
    Neurobiol Dis; 2021 Jun; 153():105304. PubMed ID: 33621640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and Synaptic Bases of CDKL5 Disorder.
    Zhu YC; Xiong ZQ
    Dev Neurobiol; 2019 Jan; 79(1):8-19. PubMed ID: 30246934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IκB kinase/nuclear factor κB-dependent insulin-like growth factor 2 (Igf2) expression regulates synapse formation and spine maturation via Igf2 receptor signaling.
    Schmeisser MJ; Baumann B; Johannsen S; Vindedal GF; Jensen V; Hvalby ØC; Sprengel R; Seither J; Maqbool A; Magnutzki A; Lattke M; Oswald F; Boeckers TM; Wirth T
    J Neurosci; 2012 Apr; 32(16):5688-703. PubMed ID: 22514330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced hippocampal LTP but normal NMDA receptor and AMPA receptor function in a rat model of CDKL5 deficiency disorder.
    Simões de Oliveira L; O'Leary HE; Nawaz S; Loureiro R; Davenport EC; Baxter P; Louros SR; Dando O; Perkins E; Peltier J; Trost M; Osterweil EK; Hardingham GE; Cousin MA; Chattarji S; Booker SA; Benke TA; Wyllie DJA; Kind PC
    Mol Autism; 2024 Jun; 15(1):28. PubMed ID: 38877552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons.
    Ricciardi S; Ungaro F; Hambrock M; Rademacher N; Stefanelli G; Brambilla D; Sessa A; Magagnotti C; Bachi A; Giarda E; Verpelli C; Kilstrup-Nielsen C; Sala C; Kalscheuer VM; Broccoli V
    Nat Cell Biol; 2012 Sep; 14(9):911-23. PubMed ID: 22922712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The antidepressant tianeptine reverts synaptic AMPA receptor defects caused by deficiency of CDKL5.
    Tramarin M; Rusconi L; Pizzamiglio L; Barbiero I; Peroni D; Scaramuzza L; Guilliams T; Cavalla D; Antonucci F; Kilstrup-Nielsen C
    Hum Mol Genet; 2018 Jun; 27(12):2052-2063. PubMed ID: 29618004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Palmitoylation-dependent CDKL5-PSD-95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development.
    Zhu YC; Li D; Wang L; Lu B; Zheng J; Zhao SL; Zeng R; Xiong ZQ
    Proc Natl Acad Sci U S A; 2013 May; 110(22):9118-23. PubMed ID: 23671101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A requirement for nuclear factor-kappaB in developmental and plasticity-associated synaptogenesis.
    Boersma MC; Dresselhaus EC; De Biase LM; Mihalas AB; Bergles DE; Meffert MK
    J Neurosci; 2011 Apr; 31(14):5414-25. PubMed ID: 21471377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AMPA Receptor Dysregulation and Therapeutic Interventions in a Mouse Model of CDKL5 Deficiency Disorder.
    Yennawar M; White RS; Jensen FE
    J Neurosci; 2019 Jun; 39(24):4814-4828. PubMed ID: 30952813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HDAC4: a key factor underlying brain developmental alterations in CDKL5 disorder.
    Trazzi S; Fuchs C; Viggiano R; De Franceschi M; Valli E; Jedynak P; Hansen FK; Perini G; Rimondini R; Kurz T; Bartesaghi R; Ciani E
    Hum Mol Genet; 2016 Sep; 25(18):3887-3907. PubMed ID: 27466189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Destabilization of the postsynaptic density by PSD-95 serine 73 phosphorylation inhibits spine growth and synaptic plasticity.
    Steiner P; Higley MJ; Xu W; Czervionke BL; Malenka RC; Sabatini BL
    Neuron; 2008 Dec; 60(5):788-802. PubMed ID: 19081375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping pathological phenotypes in a mouse model of CDKL5 disorder.
    Amendola E; Zhan Y; Mattucci C; Castroflorio E; Calcagno E; Fuchs C; Lonetti G; Silingardi D; Vyssotski AL; Farley D; Ciani E; Pizzorusso T; Giustetto M; Gross CT
    PLoS One; 2014; 9(5):e91613. PubMed ID: 24838000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Bases of Atypical Whisker Responses in a Mouse Model of CDKL5 Deficiency Disorder.
    Pizzo R; Lamarca A; Sassoè-Pognetto M; Giustetto M
    Neuroscience; 2020 Oct; 445():130-143. PubMed ID: 31472213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pin1 Modulates the Synaptic Content of NMDA Receptors via Prolyl-Isomerization of PSD-95.
    Antonelli R; De Filippo R; Middei S; Stancheva S; Pastore B; Ammassari-Teule M; Barberis A; Cherubini E; Zacchi P
    J Neurosci; 2016 May; 36(20):5437-47. PubMed ID: 27194325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dendritic spine instability leads to progressive neocortical spine loss in a mouse model of Huntington's disease.
    Murmu RP; Li W; Holtmaat A; Li JY
    J Neurosci; 2013 Aug; 33(32):12997-3009. PubMed ID: 23926255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterozygous CDKL5 Knockout Female Mice Are a Valuable Animal Model for CDKL5 Disorder.
    Fuchs C; Gennaccaro L; Trazzi S; Bastianini S; Bettini S; Lo Martire V; Ren E; Medici G; Zoccoli G; Rimondini R; Ciani E
    Neural Plast; 2018; 2018():9726950. PubMed ID: 29977282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CDKL5 controls postsynaptic localization of GluN2B-containing NMDA receptors in the hippocampus and regulates seizure susceptibility.
    Okuda K; Kobayashi S; Fukaya M; Watanabe A; Murakami T; Hagiwara M; Sato T; Ueno H; Ogonuki N; Komano-Inoue S; Manabe H; Yamaguchi M; Ogura A; Asahara H; Sakagami H; Mizuguchi M; Manabe T; Tanaka T
    Neurobiol Dis; 2017 Oct; 106():158-170. PubMed ID: 28688852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. mGluR5 PAMs rescue cortical and behavioural defects in a mouse model of CDKL5 deficiency disorder.
    Gurgone A; Pizzo R; Raspanti A; Chiantia G; Devi S; Comai D; Morello N; Pilotto F; Gnavi S; Lupori L; Mazziotti R; Sagona G; Putignano E; Nocentini A; Supuran CT; Marcantoni A; Pizzorusso T; Giustetto M
    Neuropsychopharmacology; 2023 May; 48(6):877-886. PubMed ID: 35945276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CDKL5 Deficiency Augments Inhibitory Input into the Dentate Gyrus That Can Be Reversed by Deep Brain Stimulation.
    Hao S; Wang Q; Tang B; Wu Z; Yang T; Tang J
    J Neurosci; 2021 Oct; 41(43):9031-9046. PubMed ID: 34544833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.