BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 26452824)

  • 1. Draw your assay: Fabrication of low-cost paper-based diagnostic and multi-well test zones by drawing on a paper.
    Oyola-Reynoso S; Heim AP; Halbertsma-Black J; Zhao C; Tevis ID; Çınar S; Cademartiri R; Liu X; Bloch JF; Thuo MM
    Talanta; 2015 Nov; 144():289-93. PubMed ID: 26452824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reprint of 'Draw your assay: Fabrication of low-cost paper-based diagnostic and multi-well test zones by drawing on a paper'.
    Oyola-Reynoso S; Heim AP; Halbertsma-Black J; Zhao C; Tevis ID; Çınar S; Cademartiri R; Liu X; Bloch JF; Thuo MM
    Talanta; 2015 Dec; 145():73-7. PubMed ID: 26459446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays.
    Chiang CK; Kurniawan A; Kao CY; Wang MJ
    Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices.
    Liu M; Zhang C; Liu F
    Anal Chim Acta; 2015 Sep; 891():234-46. PubMed ID: 26388382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple method for patterning poly(dimethylsiloxane) barriers in paper using contact-printing with low-cost rubber stamps.
    Dornelas KL; Dossi N; Piccin E
    Anal Chim Acta; 2015 Feb; 858():82-90. PubMed ID: 25597806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing.
    Lu Y; Shi W; Qin J; Lin B
    Anal Chem; 2010 Jan; 82(1):329-35. PubMed ID: 20000582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of paper devices via laser-heating-wax-printing for high-tech enzyme-linked immunosorbent assays with low-tech pen-type pH meter readout.
    Le S; Zhou H; Nie J; Cao C; Yang J; Pan H; Li J; Zhang Y
    Analyst; 2017 Jan; 142(3):511-516. PubMed ID: 28106171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of paper-based microfluidic sensors by printing.
    Li X; Tian J; Garnier G; Shen W
    Colloids Surf B Biointerfaces; 2010 Apr; 76(2):564-70. PubMed ID: 20097546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-cost, high-throughput fabrication of cloth-based microfluidic devices using a photolithographical patterning technique.
    Wu P; Zhang C
    Lab Chip; 2015 Mar; 15(6):1598-608. PubMed ID: 25656508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous-Ink, Multiplexed Pen-Plotter Approach for Low-Cost, High-Throughput Fabrication of Paper-Based Microfluidics.
    Amin R; Ghaderinezhad F; Li L; Lepowsky E; Yenilmez B; Knowlton S; Tasoglu S
    Anal Chem; 2017 Jun; 89(12):6351-6357. PubMed ID: 28598152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-step polymer screen-printing for microfluidic paper-based analytical device (μPAD) fabrication.
    Sameenoi Y; Nongkai PN; Nouanthavong S; Henry CS; Nacapricha D
    Analyst; 2014 Dec; 139(24):6580-8. PubMed ID: 25360590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay.
    Lu Y; Shi W; Jiang L; Qin J; Lin B
    Electrophoresis; 2009 May; 30(9):1497-500. PubMed ID: 19340829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing.
    Mohammadi S; Maeki M; Mohamadi RM; Ishida A; Tani H; Tokeshi M
    Analyst; 2015 Oct; 140(19):6493-9. PubMed ID: 26207925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an automated wax-printed paper-based lateral flow device for alpha-fetoprotein enzyme-linked immunosorbent assay.
    Preechakasedkit P; Siangproh W; Khongchareonporn N; Ngamrojanavanich N; Chailapakul O
    Biosens Bioelectron; 2018 Apr; 102():27-32. PubMed ID: 29107857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper.
    Costa MN; Veigas B; Jacob JM; Santos DS; Gomes J; Baptista PV; Martins R; Inácio J; Fortunato E
    Nanotechnology; 2014 Mar; 25(9):094006. PubMed ID: 24521980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel highly flexible, simple, rapid and low-cost fabrication tool for paper-based microfluidic devices (μPADs) using technical drawing pens and in-house formulated aqueous inks.
    Nuchtavorn N; Macka M
    Anal Chim Acta; 2016 May; 919():70-77. PubMed ID: 27086101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-cost fabrication of paper-based microfluidic devices by one-step plotting.
    Nie J; Zhang Y; Lin L; Zhou C; Li S; Zhang L; Li J
    Anal Chem; 2012 Aug; 84(15):6331-5. PubMed ID: 22881397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices.
    Yang X; Forouzan O; Brown TP; Shevkoplyas SS
    Lab Chip; 2012 Jan; 12(2):274-80. PubMed ID: 22094609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct writing electrodes using a ball pen for paper-based point-of-care testing.
    Li Z; Li F; Hu J; Wee WH; Han YL; Pingguan-Murphy B; Lu TJ; Xu F
    Analyst; 2015 Aug; 140(16):5526-35. PubMed ID: 26079757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.