These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 2645284)

  • 1. In vitro RNA processing generates mature 3' termini of yeast 35 and 25 S ribosomal RNAs.
    Yip MT; Holland MJ
    J Biol Chem; 1989 Mar; 264(7):4045-51. PubMed ID: 2645284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequences within the spacer region of yeast rRNA cistrons that stimulate 35S rRNA synthesis in vivo mediate RNA polymerase I-dependent promoter and terminator activities.
    Mestel R; Yip M; Holland JP; Wang E; Kang J; Holland MJ
    Mol Cell Biol; 1989 Mar; 9(3):1243-54. PubMed ID: 2657388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA polymerase I-dependent selective transcription of yeast ribosomal DNA. Identification of a new cellular ribosomal RNA precursor.
    Swanson ME; Holland MJ
    J Biol Chem; 1983 Mar; 258(5):3242-50. PubMed ID: 6298229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pathway to maturity: processing of ribosomal RNA in Saccharomyces cerevisiae.
    Raué HA; Planta RJ
    Gene Expr; 1995; 5(1):71-7. PubMed ID: 7488861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast precursor ribosomal RNA. Molecular cloning and probing the higher-order structure of the internal transcribed spacer I by kethoxal and dimethylsulfate modification.
    Thweatt R; Lee JC
    J Mol Biol; 1990 Jan; 211(2):305-20. PubMed ID: 2407850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the 3' external transcribed spacer in yeast pre-rRNA processing.
    Allmang C; Tollervey D
    J Mol Biol; 1998 Apr; 278(1):67-78. PubMed ID: 9571034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription elongation by RNA polymerase I is linked to efficient rRNA processing and ribosome assembly.
    Schneider DA; Michel A; Sikes ML; Vu L; Dodd JA; Salgia S; Osheim YN; Beyer AL; Nomura M
    Mol Cell; 2007 Apr; 26(2):217-29. PubMed ID: 17466624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Termination of transcription of ribosomal RNA in Saccharomyces cerevisiae.
    Johnson SP; Warner JR
    Mol Cell Biochem; 1991 May 29-Jun 12; 104(1-2):163-8. PubMed ID: 1921996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initiation, processing and termination of ribosomal RNA from a hybrid 5 S ribosomal RNA gene in a plasmid.
    Szeberényi J; Apirion D
    J Mol Biol; 1983 Aug; 168(3):525-57. PubMed ID: 6193278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ribosomal-RNA-processing pathway in Schizosaccharomyces pombe.
    Good L; Intine RV; Nazar RN
    Eur J Biochem; 1997 Jul; 247(1):314-21. PubMed ID: 9249042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the ITS2-proximal stem and evidence for indirect recognition of processing sites in pre-rRNA processing in yeast.
    Côté CA; Peculis BA
    Nucleic Acids Res; 2001 May; 29(10):2106-16. PubMed ID: 11353080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific initiation by RNA polymerase I in a whole-cell extract from yeast.
    Schultz MC; Choe SY; Reeder RH
    Proc Natl Acad Sci U S A; 1991 Feb; 88(3):1004-8. PubMed ID: 1992452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saccharomyces cerevisiae RNA polymerase I terminates transcription at the Reb1 terminator in vivo.
    Reeder RH; Guevara P; Roan JG
    Mol Cell Biol; 1999 Nov; 19(11):7369-76. PubMed ID: 10523625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupled transcription and processing of mouse ribosomal RNA in a cell-free system.
    Mishima Y; Mitsuma T; Ogata K
    EMBO J; 1985 Dec; 4(13B):3879-86. PubMed ID: 3004977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defective processing of ribosomal precursor RNA in Saccharomyces cerevisiae.
    Mitlin JA; Cannon M
    Biochem J; 1984 Jun; 220(2):461-7. PubMed ID: 6378187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of an RNA polymerase I-dependent promoter within the spacer region of yeast ribosomal cistrons.
    Swanson ME; Yip M; Holland MJ
    J Biol Chem; 1985 Aug; 260(17):9905-15. PubMed ID: 2991269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Domain III of Saccharomyces cerevisiae 25 S ribosomal RNA: its role in binding of ribosomal protein L25 and 60 S subunit formation.
    van Beekvelt CA; Kooi EA; de Graaff-Vincent M; Riet J; Venema J; Raué HA
    J Mol Biol; 2000 Feb; 296(1):7-17. PubMed ID: 10656814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of site-directed mutations in the central domain of 16 S ribosomal RNA upon ribosomal protein binding, RNA processing and 30 S subunit assembly.
    Stark MJ; Gregory RJ; Gourse RL; Thurlow DL; Zwieb C; Zimmermann RA; Dahlberg AE
    J Mol Biol; 1984 Sep; 178(2):303-22. PubMed ID: 6208367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Processing of the 3' sequence extensions upon the 5S rRNA of a mutant yeast in Xenopus laevis germinal vesicle extract.
    Piper PW; Patel N; Lockheart A
    Eur J Biochem; 1984 May; 141(1):115-8. PubMed ID: 6327301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure analysis of the 5' external transcribed spacer of the precursor ribosomal RNA from Saccharomyces cerevisiae.
    Yeh LC; Lee JC
    J Mol Biol; 1992 Dec; 228(3):827-39. PubMed ID: 1469716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.