These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26452927)

  • 1. Ultrasensitive detection of amifostine and alkaline phosphatase based on the growth of CdS quantum dots.
    Na W; Liu S; Liu X; Su X
    Talanta; 2015 Nov; 144():1059-64. PubMed ID: 26452927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence detection of adenosine-5'-triphosphate and alkaline phosphatase based on the generation of CdS quantum dots.
    Liu S; Wang X; Pang S; Na W; Yan X; Su X
    Anal Chim Acta; 2014 May; 827():103-10. PubMed ID: 24833001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of stable CdTe/CdS QDs using dithiol as surface ligand for alkaline phosphatase detection based on inner filter effect.
    Mao G; Zhang Q; Yang Y; Ji X; He Z
    Anal Chim Acta; 2019 Jan; 1047():208-213. PubMed ID: 30567651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mimicking biological process to detect alkaline phosphatase activity using the vitamin B
    Upadhyay Y; Bothra S; Kumar R; Kumar Sk A; Sahoo SK
    Colloids Surf B Biointerfaces; 2020 Jan; 185():110624. PubMed ID: 31711735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorometric determination of the activity of alkaline phosphatase based on a system composed of WS
    Duan X; Liu Q; Su X
    Mikrochim Acta; 2019 Nov; 186(12):839. PubMed ID: 31760490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorometric determination of amifostine and alkaline phosphatase on amphiprotic molecularly imprinted silica crosslinked with binary functional silanes and carbon dots.
    Ke CB; Lu TL; Chen JL
    Biosens Bioelectron; 2020 Mar; 151():111965. PubMed ID: 31868611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile Synthesis of Glutathione-capped CdS Quantum Dots as a Fluorescence Sensor for Rapid Detection and Quantification of Paraquat.
    Li H; Liu J; Yang X
    Anal Sci; 2015; 31(10):1011-7. PubMed ID: 26460365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of water soluble CuGaS
    Huangfu X; Shen Y; Yang A; Liu L; Luo W; Zhao W
    Colloids Surf B Biointerfaces; 2020 Jul; 191():110984. PubMed ID: 32278281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capped cadmium sulfide quantum dots with a new ionic liquid as a fluorescent probe for sensitive detection of florfenicol in meat samples.
    Sadeghi S; Olieaei S
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec; 223():117349. PubMed ID: 31319275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyethylenimine-Capped CdS Quantum Dots for Sensitive and Selective Detection of Nitrite in Vegetables and Water.
    Ren HH; Fan Y; Wang B; Yu LP
    J Agric Food Chem; 2018 Aug; 66(33):8851-8858. PubMed ID: 30016094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Cobalt-Sensitive Fluorescent Chemosensor Based on Ligand Capped CdS Quantum Dots.
    Faridbod F; Jamali A; Ganjali MR; Hosseini M; Norouzi P
    J Fluoresc; 2015 May; 25(3):613-9. PubMed ID: 25804832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive cysteine sensing using citrate-capped CdS quantum dots.
    Wang GL; Dong YM; Yang HX; Li ZJ
    Talanta; 2011 Jan; 83(3):943-7. PubMed ID: 21147341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow-injection chemiluminescence analysis for sensitive determination of atenolol using cadmium sulfide quantum dots.
    Khataee A; Lotfi R; Hasanzadeh A; Iranifam M; Joo SW
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar; 157():88-95. PubMed ID: 26724494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective turn-on fluorescence sensor for Ag+ using cysteamine capped CdS quantum dots: determination of free Ag+ in silver nanoparticles solution.
    Khantaw T; Boonmee C; Tuntulani T; Ngeontae W
    Talanta; 2013 Oct; 115():849-56. PubMed ID: 24054673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel ultrasensitive carboxymethyl chitosan-quantum dot-based fluorescence "turn on-off" nanosensor for lysozyme detection.
    Song Y; Li Y; Liu Z; Liu L; Wang X; Su X; Ma Q
    Biosens Bioelectron; 2014 Nov; 61():9-13. PubMed ID: 24841088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of novel bithiazolidine derivatives-capped CdTe/CdS quantum dots used as a novel Hg
    Hallaj R; Hosseinchi Z; Babamiri B; Zandi S
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 216():418-423. PubMed ID: 30927699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CdS quantum dots embedded in PVP: Inorganic phosphate ion sensing in real sample and its antimicrobial activity.
    Dhar S; Sen B; Mukhopadhyay SK; Mukherjee T; Chattopadhyay AP; Pramanik S
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jun; 234():118256. PubMed ID: 32217451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Use of acidophilic bacteria of the genus Acidithiobacillus to biosynthesize CdS fluorescent nanoparticles (quantum dots) with high tolerance to acidic pH".
    Ulloa G; Collao B; Araneda M; Escobar B; Álvarez S; Bravo D; Pérez-Donoso JM
    Enzyme Microb Technol; 2016 Dec; 95():217-224. PubMed ID: 27866618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of the fluorescence quenching efficiency of DPPH(•) on colloidal nanocrystalline quantum dots in aqueous micelles.
    Noipa T; Martwiset S; Butwong N; Tuntulani T; Ngeontae W
    J Fluoresc; 2011 Sep; 21(5):1941-9. PubMed ID: 21573967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface functionalized fluorescent CdS QDs: selective fluorescence switching and quenching by Cu(2+) and Hg(2+) at wide pH range.
    Akshya S; Hariharan PS; Kumar VV; Anthony SP
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():335-41. PubMed ID: 25084239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.