BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26452933)

  • 1. Thermally reduced graphene oxide: The study and use for reagentless amperometric D-fructose biosensors.
    Šakinytė I; Barkauskas J; Gaidukevič J; Razumienė J
    Talanta; 2015 Nov; 144():1096-103. PubMed ID: 26452933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reagentless D-Tagatose Biosensors Based on the Oriented Immobilization of Fructose Dehydrogenase onto Coated Gold Nanoparticles- or Reduced Graphene Oxide-Modified Surfaces: Application in a Prototype Bioreactor.
    Šakinytė I; Butkevičius M; Gurevičienė V; Stankevičiūtė J; Meškys R; Razumienė J
    Biosensors (Basel); 2021 Nov; 11(11):. PubMed ID: 34821682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated bienzyme glucose oxidase-fructose dehydrogenase-tetrathiafulvalene-3-mercaptopropionic acid-gold electrode for the simultaneous determination of glucose and fructose.
    Campuzano S; Loaiza OA; Pedrero M; de Villena FJ; Pingarrón JM
    Bioelectrochemistry; 2004 Jun; 63(1-2):199-206. PubMed ID: 15110273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D-fructose detection based on the direct heterogeneous electron transfer reaction of fructose dehydrogenase adsorbed onto multi-walled carbon nanotubes synthesized on platinum electrode.
    Tominaga M; Nomura S; Taniguchi I
    Biosens Bioelectron; 2009 Jan; 24(5):1184-8. PubMed ID: 18707862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of carbon-platinum hybrid nanostructure architecture for amperometric biosensing.
    Vanegas DC; Taguchi M; Chaturvedi P; Burrs S; Tan M; Yamaguchi H; McLamore ES
    Analyst; 2014 Feb; 139(3):660-7. PubMed ID: 24336219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Synergy of Thermally Reduced Graphene Oxide in Amperometric Urea Biosensor: Application for Medical Technologies.
    Razumiene J; Gureviciene V; Sakinyte I; Rimsevicius L; Laurinavicius V
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32796728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure effect on graphene-modified enzyme electrode glucose sensors.
    Zhang X; Liao Q; Chu M; Liu S; Zhang Y
    Biosens Bioelectron; 2014 Feb; 52():281-7. PubMed ID: 24071363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermally reduced graphenes exhibiting a close relationship to amorphous carbon.
    Wong CH; Ambrosi A; Pumera M
    Nanoscale; 2012 Aug; 4(16):4972-7. PubMed ID: 22760743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform.
    Teymourian H; Salimi A; Khezrian S
    Biosens Bioelectron; 2013 Nov; 49():1-8. PubMed ID: 23708810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coulometric D-fructose biosensor based on direct electron transfer using D-fructose dehydrogenase.
    Tsujimura S; Nishina A; Kamitaka Y; Kano K
    Anal Chem; 2009 Nov; 81(22):9383-7. PubMed ID: 19908905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite.
    Palanisamy S; Cheemalapati S; Chen SM
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():207-13. PubMed ID: 24268251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eco-synthesis of graphene and its use in dihydronicotinamide adenine dinucleotide sensing.
    Amouzadeh Tabrizi M; Jalilzadeh Azar S; Nadali Varkani J
    Anal Biochem; 2014 Sep; 460():29-35. PubMed ID: 24835427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioelectrocatalytic performance of d-fructose dehydrogenase.
    Adachi T; Kaida Y; Kitazumi Y; Shirai O; Kano K
    Bioelectrochemistry; 2019 Oct; 129():1-9. PubMed ID: 31063949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium dodecyl benzene sulfonate functionalized graphene for confined electrochemical growth of metal/oxide nanocomposites for sensing application.
    Zhou S; Wei D; Shi H; Feng X; Xue K; Zhang F; Song W
    Talanta; 2013 Mar; 107():349-55. PubMed ID: 23598233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis.
    Kamitaka Y; Tsujimura S; Setoyama N; Kajino T; Kano K
    Phys Chem Chem Phys; 2007 Apr; 9(15):1793-801. PubMed ID: 17415490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel bioelectrochemical sensing platform based on covalently attachment of cobalt phthalocyanine to graphene oxide.
    Hosseini H; Mahyari M; Bagheri A; Shaabani A
    Biosens Bioelectron; 2014 Feb; 52():136-42. PubMed ID: 24035858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partially reduced graphene oxide-gold nanorods composite based bioelectrode of improved sensing performance.
    Nirala NR; Abraham S; Kumar V; Pandey SA; Yadav U; Srivastava M; Srivastava SK; Singh VN; Kayastha AM; Srivastava A; Saxena PS
    Talanta; 2015 Nov; 144():745-54. PubMed ID: 26452886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid and direct determination of fructose in food: a new osmium-polymer mediated biosensor.
    Antiochia R; Vinci G; Gorton L
    Food Chem; 2013 Oct; 140(4):742-7. PubMed ID: 23692761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of pH and divalent/monovalent cations on the internal electron transfer (IET), enzymatic activity, and structure of fructose dehydrogenase.
    Bollella P; Hibino Y; Kano K; Gorton L; Antiochia R
    Anal Bioanal Chem; 2018 May; 410(14):3253-3264. PubMed ID: 29564502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lab-made flexible third-generation fructose biosensors based on 0D-nanostructured transducers.
    Silveri F; Paolini D; Della Pelle F; Bollella P; Scroccarello A; Suzuki Y; Fukawa E; Sowa K; Di Franco C; Torsi L; Compagnone D
    Biosens Bioelectron; 2023 Oct; 237():115450. PubMed ID: 37343312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.