BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 2645298)

  • 1. The intracellular location of yeast heat-shock protein 26 varies with metabolism.
    Rossi JM; Lindquist S
    J Cell Biol; 1989 Feb; 108(2):425-39. PubMed ID: 2645298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The small heat-shock protein Hsp26 of Saccharomyces cerevisiae assembles into a high molecular weight aggregate.
    Bentley NJ; Fitch IT; Tuite MF
    Yeast; 1992 Feb; 8(2):95-106. PubMed ID: 1561840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional and translational regulation of major heat shock proteins and patterns of trehalose mobilization during hyperthermic recovery in repressed and derepressed Saccharomyces cerevisiae.
    Gross C; Watson K
    Can J Microbiol; 1998 Apr; 44(4):341-50. PubMed ID: 9674106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the hsp26 of Saccharomyces cerevisiae.
    Silva JT; Verícimo MA; Floriano WB; Dutra MB; Panek AD
    Biochem Mol Biol Int; 1994 May; 33(2):211-20. PubMed ID: 7951041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional derepression of the Saccharomyces cerevisiae HSP26 gene during heat shock.
    Susek RE; Lindquist S
    Mol Cell Biol; 1990 Dec; 10(12):6362-73. PubMed ID: 2123293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of over-expressed hsp26 on cell growth of yeast.
    Unno K; Kishido T; Okada S
    Biol Pharm Bull; 1998 Jun; 21(6):631-3. PubMed ID: 9657052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104.
    Cashikar AG; Duennwald M; Lindquist SL
    J Biol Chem; 2005 Jun; 280(25):23869-75. PubMed ID: 15845535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of the chaperone Hsp26 is controlled by the rearrangement of its thermosensor domain.
    Franzmann TM; Menhorn P; Walter S; Buchner J
    Mol Cell; 2008 Feb; 29(2):207-16. PubMed ID: 18243115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct evidence for the intracellular localization of Hsp104 in Saccharomyces cerevisiae by immunoelectron microscopy.
    Kawai R; Fujita K; Iwahashi H; Komatsu Y
    Cell Stress Chaperones; 1999 Mar; 4(1):46-53. PubMed ID: 10467108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae.
    Haslbeck M; Braun N; Stromer T; Richter B; Model N; Weinkauf S; Buchner J
    EMBO J; 2004 Feb; 23(3):638-49. PubMed ID: 14749732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yeast heat-shock protein gene HSP26 enhances freezing tolerance in Arabidopsis.
    Xue Y; Peng R; Xiong A; Li X; Zha D; Yao Q
    J Plant Physiol; 2009 May; 166(8):844-50. PubMed ID: 19167777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation activates the yeast small heat shock protein Hsp26 by weakening domain contacts in the oligomer ensemble.
    Mühlhofer M; Peters C; Kriehuber T; Kreuzeder M; Kazman P; Rodina N; Reif B; Haslbeck M; Weinkauf S; Buchner J
    Nat Commun; 2021 Nov; 12(1):6697. PubMed ID: 34795272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat shock and ethanol stress provoke distinctly different responses in 3'-processing and nuclear export of HSP mRNA in Saccharomyces cerevisiae.
    Izawa S; Kita T; Ikeda K; Inoue Y
    Biochem J; 2008 Aug; 414(1):111-9. PubMed ID: 18442359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress tolerance of the Saccharomyces cerevisiae adenylate cyclase fil1 (CYR1) mutant depends on Hsp26.
    Vianna CR; Ferreira MC; Silva CL; Tanghe A; Neves MJ; Thevelein JM; Rosa CA; Van Dijck P
    J Mol Microbiol Biotechnol; 2010; 19(3):140-6. PubMed ID: 20924200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat-shock protein 104 expression is sufficient for thermotolerance in yeast.
    Lindquist S; Kim G
    Proc Natl Acad Sci U S A; 1996 May; 93(11):5301-6. PubMed ID: 8643570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization.
    Haslbeck M; Ignatiou A; Saibil H; Helmich S; Frenzl E; Stromer T; Buchner J
    J Mol Biol; 2004 Oct; 343(2):445-55. PubMed ID: 15451672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the regulation of the molecular chaperone Hsp26 by temperature-induced dissociation: the N-terminal domail is important for oligomer assembly and the binding of unfolding proteins.
    Stromer T; Fischer E; Richter K; Haslbeck M; Buchner J
    J Biol Chem; 2004 Mar; 279(12):11222-8. PubMed ID: 14722093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hsp26 is not required for growth at high temperatures, nor for thermotolerance, spore development, or germination.
    Petko L; Lindquist S
    Cell; 1986 Jun; 45(6):885-94. PubMed ID: 3518952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that the Saccharomyces cerevisiae CIF1 (GGS1/TPS1) gene modulates heat shock response positively.
    Hazell BW; Nevalainen H; Attfield PV
    FEBS Lett; 1995 Dec; 377(3):457-60. PubMed ID: 8549775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hsp26: a temperature-regulated chaperone.
    Haslbeck M; Walke S; Stromer T; Ehrnsperger M; White HE; Chen S; Saibil HR; Buchner J
    EMBO J; 1999 Dec; 18(23):6744-51. PubMed ID: 10581247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.