These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 2645298)

  • 21. Phase-specific gene expression in Saccharomyces cerevisiae, using maltose as carbon source under oxygen-limiting conditions.
    Donalies UE; Stahl U
    Curr Genet; 2001 May; 39(3):150-5. PubMed ID: 11409176
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Altered synthesis of the 26-kDa heat stress protein family and thermotolerance in cell lines with elevated levels of calcium-binding proteins.
    Evans DP; Simonette RA; Rasmussen CD; Means AR; Tomasovic SP
    J Cell Physiol; 1990 Mar; 142(3):615-27. PubMed ID: 2312618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multimerization of Hsp42p, a novel heat shock protein of Saccharomyces cerevisiae, is dependent on a conserved carboxyl-terminal sequence.
    Wotton D; Freeman K; Shore D
    J Biol Chem; 1996 Feb; 271(5):2717-23. PubMed ID: 8576246
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Known heat-shock proteins are not responsible for stress-induced rapid degradation of ribosomal protein mRNAs in yeast.
    Galego L; Barahona I; Alves AP; Vreken P; Raué HA; Planta RJ; Rodrigues-Pousada C
    Yeast; 1993 Jun; 9(6):583-8. PubMed ID: 8346674
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The plasma membrane of yeast acquires a novel heat-shock protein (hsp30) and displays a decline in proton-pumping ATPase levels in response to both heat shock and the entry to stationary phase.
    Panaretou B; Piper PW
    Eur J Biochem; 1992 Jun; 206(3):635-40. PubMed ID: 1535043
    [TBL] [Abstract][Full Text] [Related]  

  • 26. HySP26 gene transcription is strongly induced during Saccharomyces cerevisiae growth at low pH.
    Carmelo V; Sá-Correia I
    FEMS Microbiol Lett; 1997 Apr; 149(1):85-8. PubMed ID: 9103979
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the thermotolerant cell. II. Effects on the intracellular distribution of heat-shock protein 70, intermediate filaments, and small nuclear ribonucleoprotein complexes.
    Welch WJ; Mizzen LA
    J Cell Biol; 1988 Apr; 106(4):1117-30. PubMed ID: 2966179
    [TBL] [Abstract][Full Text] [Related]  

  • 28. hsp26 of Saccharomyces cerevisiae is related to the superfamily of small heat shock proteins but is without a demonstrable function.
    Susek RE; Lindquist SL
    Mol Cell Biol; 1989 Nov; 9(11):5265-71. PubMed ID: 2689876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Catabolite control of the elevation of PGK mRNA levels by heat shock in Saccharomyces cerevisiae.
    Piper PW; Curran B; Davies MW; Hirst K; Lockheart A; Seward K
    Mol Microbiol; 1988 May; 2(3):353-61. PubMed ID: 3041241
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cellular localization of Drosophila 83-kilodalton heat shock protein in normal, heat-shocked, and recovering cultured cells with a specific antibody.
    Carbajal ME; Duband JL; Lettre F; Valet JP; Tanguay RM
    Biochem Cell Biol; 1986 Aug; 64(8):816-25. PubMed ID: 2429681
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The dynamic state of heat shock proteins in chicken embryo fibroblasts.
    Collier NC; Schlesinger MJ
    J Cell Biol; 1986 Oct; 103(4):1495-507. PubMed ID: 3533955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heat shock protein synthesis and trehalose accumulation are not required for induced thermotolerance in depressed Saccharomyces cerevisiae.
    Gross C; Watson K
    Biochem Biophys Res Commun; 1996 Mar; 220(3):766-72. PubMed ID: 8607839
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purification and characterization of the chaperone-like Hsp26 from Saccharomyces cerevisiae.
    Ferreira RM; de Andrade LR; Dutra MB; de Souza MF; Flosi Paschoalin VM; Silva JT
    Protein Expr Purif; 2006 Jun; 47(2):384-92. PubMed ID: 16603379
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of ATP on the release of hsp 70 and hsp 40 from the nucleus in heat-shocked HeLa cells.
    Ohtsuka K; Utsumi KR; Kaneda T; Hattori H
    Exp Cell Res; 1993 Dec; 209(2):357-66. PubMed ID: 8262154
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The yeast heat shock response is induced by conversion of cells to spheroplasts and by potent transcriptional inhibitors.
    Adams CC; Gross DS
    J Bacteriol; 1991 Dec; 173(23):7429-35. PubMed ID: 1938939
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hsp104 responds to heat and oxidative stress with different intracellular localization in Saccharomyces cerevisiae.
    Fujita K; Kawai R; Iwahashi H; Komatsu Y
    Biochem Biophys Res Commun; 1998 Jul; 248(3):542-7. PubMed ID: 9703962
    [TBL] [Abstract][Full Text] [Related]  

  • 37. hsp70: nuclear concentration during environmental stress and cytoplasmic storage during recovery.
    Velazquez JM; Lindquist S
    Cell; 1984 Mar; 36(3):655-62. PubMed ID: 6421488
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Induction of Hsp104 synthesis in Saccharomyces cerevisiae is inhibited by the petite mutation in the stationary growth phase].
    Fedoseeva IV; Rikhanov EG; Varakina NN; Rusaleva TM; Pyatrikas DV; Stepanov AV; Fedyaeva AV
    Genetika; 2014 Mar; 50(3):273-81. PubMed ID: 25438547
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Yeast protein glycation in vivo by methylglyoxal. Molecular modification of glycolytic enzymes and heat shock proteins.
    Gomes RA; Vicente Miranda H; Silva MS; Graça G; Coelho AV; Ferreira AE; Cordeiro C; Freire AP
    FEBS J; 2006 Dec; 273(23):5273-87. PubMed ID: 17064314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The activation mechanism of Hsp26 does not require dissociation of the oligomer.
    Franzmann TM; Wühr M; Richter K; Walter S; Buchner J
    J Mol Biol; 2005 Jul; 350(5):1083-93. PubMed ID: 15967461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.