BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 26453214)

  • 1. Preparation of Crystalline Samples of Amyloid Fibrils and Oligomers.
    Moshe A; Landau M; Eisenberg D
    Methods Mol Biol; 2016; 1345():201-10. PubMed ID: 26453214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic structures of amyloid cross-beta spines reveal varied steric zippers.
    Sawaya MR; Sambashivan S; Nelson R; Ivanova MI; Sievers SA; Apostol MI; Thompson MJ; Balbirnie M; Wiltzius JJ; McFarlane HT; Madsen AØ; Riekel C; Eisenberg D
    Nature; 2007 May; 447(7143):453-7. PubMed ID: 17468747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-Ray Structural Study of Amyloid-Like Fibrils of Tau Peptides Bound to Small-Molecule Ligands.
    Tayeb-Fligelman E; Landau M
    Methods Mol Biol; 2017; 1523():89-100. PubMed ID: 27975245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural model of amyloid fibrils for amyloidogenic peptide from Bgl2p-glucantransferase of S. cerevisiae cell wall and its modifying analog. New morphology of amyloid fibrils.
    Selivanova OM; Glyakina AV; Gorbunova EY; Mustaeva LG; Suvorina MY; Grigorashvili EI; Nikulin AD; Dovidchenko NV; Rekstina VV; Kalebina TS; Surin AK; Galzitskaya OV
    Biochim Biophys Acta; 2016 Nov; 1864(11):1489-99. PubMed ID: 27500912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Gelsolin Pathogenic D187N Mutant Exhibits Altered Conformational Stability and Forms Amyloidogenic Oligomers.
    Srivastava A; Singh J; Singh Yadav SP; Arya P; Kalim F; Rose P; Ashish ; Kundu B
    Biochemistry; 2018 Apr; 57(16):2359-2372. PubMed ID: 29637772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the cross-beta spine of amyloid-like fibrils.
    Nelson R; Sawaya MR; Balbirnie M; Madsen AØ; Riekel C; Grothe R; Eisenberg D
    Nature; 2005 Jun; 435(7043):773-8. PubMed ID: 15944695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods for Structural Analysis of Amyloid Fibrils in Misfolding Diseases.
    Vadukul DM; Al-Hilaly YK; Serpell LC
    Methods Mol Biol; 2019; 1873():109-122. PubMed ID: 30341606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systematic screen of beta(2)-microglobulin and insulin for amyloid-like segments.
    Ivanova MI; Thompson MJ; Eisenberg D
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4079-82. PubMed ID: 16537488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray Crystallographic Structures of Oligomers of Peptides Derived from β2-Microglobulin.
    Spencer RK; Kreutzer AG; Salveson PJ; Li H; Nowick JS
    J Am Chem Soc; 2015 May; 137(19):6304-11. PubMed ID: 25915729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneous triangular structures of human islet amyloid polypeptide (amylin) with internal hydrophobic cavity and external wrapping morphology reveal the polymorphic nature of amyloid fibrils.
    Zhao J; Yu X; Liang G; Zheng J
    Biomacromolecules; 2011 May; 12(5):1781-94. PubMed ID: 21428404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural characterization and biological properties of the amyloidogenic elastin-like peptide (VGGVG)3.
    Moscarelli P; Boraldi F; Bochicchio B; Pepe A; Salvi AM; Quaglino D
    Matrix Biol; 2014 Jun; 36():15-27. PubMed ID: 24686253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of
    Somberg NH; Gelenter MD; Hong M
    J Biomol NMR; 2021 May; 75(4-5):151-166. PubMed ID: 33844106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of amino acid variations in the central region of human serum amyloid A on the amyloidogenic properties.
    Takase H; Tanaka M; Miyagawa S; Yamada T; Mukai T
    Biochem Biophys Res Commun; 2014 Jan; 444(1):92-7. PubMed ID: 24440699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational and thermal characterization of a synthetic peptidic fragment inspired from human tropoelastin: Signature of the amyloid fibers.
    Dandurand J; Samouillan V; Lacoste-Ferre MH; Lacabanne C; B Bochicchio ; Pepe A
    Pathol Biol (Paris); 2014 Apr; 62(2):100-7. PubMed ID: 24674658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Studies of Amyloid Proteins at the Molecular Level.
    Eisenberg DS; Sawaya MR
    Annu Rev Biochem; 2017 Jun; 86():69-95. PubMed ID: 28125289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steric zipper of the amyloid fibrils formed by residues 109-122 of the Syrian hamster prion protein.
    Lee SW; Mou Y; Lin SY; Chou FC; Tseng WH; Chen CH; Lu CY; Yu SS; Chan JC
    J Mol Biol; 2008 May; 378(5):1142-54. PubMed ID: 18423487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring amyloid oligomers with peptide model systems.
    Samdin TD; Kreutzer AG; Nowick JS
    Curr Opin Chem Biol; 2021 Oct; 64():106-115. PubMed ID: 34229162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations to investigate the structural stability and aggregation behavior of the GGVVIA oligomers derived from amyloid beta peptide.
    Chang LK; Zhao JH; Liu HL; Liu KT; Chen JT; Tsai WB; Ho Y
    J Biomol Struct Dyn; 2009 Jun; 26(6):731-40. PubMed ID: 19385701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Aβ peptide forms non-amyloid fibrils in the presence of carbon nanotubes.
    Luo J; Wärmländer SK; Yu CH; Muhammad K; Gräslund A; Pieter Abrahams J
    Nanoscale; 2014 Jun; 6(12):6720-6. PubMed ID: 24820873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.