These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 26453229)
1. Molecular basis of resistance to imazethapyr in redroot pigweed (Amaranthus retroflexus L.) populations from China. Chen J; Huang Z; Zhang C; Huang H; Wei S; Chen J; Wang X Pestic Biochem Physiol; 2015 Oct; 124():43-7. PubMed ID: 26453229 [TBL] [Abstract][Full Text] [Related]
2. Target-site basis for resistance to imazethapyr in redroot amaranth (Amaranthus retroflexus L.). Huang Z; Chen J; Zhang C; Huang H; Wei S; Zhou X; Chen J; Wang X Pestic Biochem Physiol; 2016 Mar; 128():10-5. PubMed ID: 26969434 [TBL] [Abstract][Full Text] [Related]
3. Target-site resistance to acetolactate synthase (ALS)-inhibiting herbicides in Amaranthus palmeri from Argentina. Larran AS; Palmieri VE; Perotti VE; Lieber L; Tuesca D; Permingeat HR Pest Manag Sci; 2017 Dec; 73(12):2578-2584. PubMed ID: 28703943 [TBL] [Abstract][Full Text] [Related]
4. Resistance to acetolactate synthase inhibitors is due to a W 574 to L amino acid substitution in the ALS gene of redroot pigweed and tall waterhemp. Nandula VK; Giacomini DA; Ray JD PLoS One; 2020; 15(6):e0235394. PubMed ID: 32598352 [TBL] [Abstract][Full Text] [Related]
5. Amino acid substitution (Gly-654-Tyr) in acetolactate synthase (ALS) confers broad spectrum resistance to ALS-inhibiting herbicides. Cao Y; Zhou X; Huang Z Pest Manag Sci; 2022 Feb; 78(2):541-549. PubMed ID: 34558160 [TBL] [Abstract][Full Text] [Related]
6. 3D structure of acetolactate synthase explains why the Asp-376-Glu point mutation does not give the same resistance level to different imidazolinone herbicides. Porri A; Panozzo S; Tekeste Sisay M; Scarabel L; Lerchl J; Milani A Pestic Biochem Physiol; 2024 Sep; 204():106070. PubMed ID: 39277385 [TBL] [Abstract][Full Text] [Related]
7. A Trp-574-Leu mutation in the acetolactate synthase (ALS) gene of Lithospermum arvense L. confers broad-spectrum resistance to ALS inhibitors. Wang Q; Ge L; Zhao N; Zhang L; You L; Wang D; Liu W; Wang J Pestic Biochem Physiol; 2019 Jul; 158():12-17. PubMed ID: 31378346 [TBL] [Abstract][Full Text] [Related]
9. Development of a rapid detection assay for acetolactate synthase inhibitors resistance in three Amaranthus weed species through loop-mediated isothermal amplification. Milani A; Panozzo S; Grazia TM; Scarabel L J Sci Food Agric; 2024 Jul; 104(9):5522-5532. PubMed ID: 38358049 [TBL] [Abstract][Full Text] [Related]
10. Molecular basis for multiple resistance to acetolactate synthase-inhibiting herbicides and atrazine in Amaranthus blitoides (prostrate pigweed). Sibony M; Rubin B Planta; 2003 Apr; 216(6):1022-7. PubMed ID: 12687370 [TBL] [Abstract][Full Text] [Related]
11. Molecular basis of multiple resistance to ACCase- and ALS-inhibiting herbicides in Alopecurus japonicus from China. Bi Y; Liu W; Guo W; Li L; Yuan G; Du L; Wang J Pestic Biochem Physiol; 2016 Jan; 126():22-7. PubMed ID: 26778430 [TBL] [Abstract][Full Text] [Related]
12. Target-site basis for resistance to acetolactate synthase inhibitor in Water chickweed (Myosoton aquaticum L.). Liu W; Bi Y; Li L; Yuan G; Du L; Wang J Pestic Biochem Physiol; 2013 Sep; 107(1):50-4. PubMed ID: 25149235 [TBL] [Abstract][Full Text] [Related]
13. Cross-resistance patterns to acetolactate synthase (ALS)-inhibiting herbicides of flixweed (Descurainia sophia L.) conferred by different combinations of ALS isozymes with a Pro-197-Thr mutation or a novel Trp-574-Leu mutation. Deng W; Yang Q; Zhang Y; Jiao H; Mei Y; Li X; Zheng M Pestic Biochem Physiol; 2017 Mar; 136():41-45. PubMed ID: 28187829 [TBL] [Abstract][Full Text] [Related]
14. A novel amino acid substitution Trp574Arg in acetolactate synthase (ALS) confers broad resistance to ALS-inhibiting herbicides in crabgrass (Digitaria sanguinalis). Li J; Li M; Gao X; Fang F Pest Manag Sci; 2017 Dec; 73(12):2538-2543. PubMed ID: 28643897 [TBL] [Abstract][Full Text] [Related]
15. Target-site resistance to bensulfuron-methyl in Sagittaria trifolia L. populations. Wei S; Li P; Ji M; Dong Q; Wang H Pestic Biochem Physiol; 2015 Oct; 124():81-5. PubMed ID: 26453234 [TBL] [Abstract][Full Text] [Related]
16. Cross-resistance of horseweed (Conyza canadensis) populations with three different ALS mutations. Zheng D; Kruger GR; Singh S; Davis VM; Tranel PJ; Weller SC; Johnson WG Pest Manag Sci; 2011 Dec; 67(12):1486-92. PubMed ID: 21538801 [TBL] [Abstract][Full Text] [Related]
17. A122S, A205V, D376E, W574L and S653N substitutions in acetolactate synthase (ALS) from Amaranthus palmeri show different functional impacts on herbicide resistance. Palmieri VE; Alvarez CE; Permingeat HR; Perotti VE Pest Manag Sci; 2022 Feb; 78(2):749-757. PubMed ID: 34693637 [TBL] [Abstract][Full Text] [Related]
18. Target-site mutation accumulation among ALS inhibitor-resistant Palmer amaranth. Singh S; Singh V; Salas-Perez RA; Bagavathiannan MV; Lawton-Rauh A; Roma-Burgos N Pest Manag Sci; 2019 Apr; 75(4):1131-1139. PubMed ID: 30298618 [TBL] [Abstract][Full Text] [Related]
19. Resistance evolution and mechanisms to ALS-inhibiting herbicides in Capsella bursa-pastoris populations from China. Li J; Gao X; Li M; Fang F Pestic Biochem Physiol; 2019 Sep; 159():17-21. PubMed ID: 31400779 [TBL] [Abstract][Full Text] [Related]
20. Investigation of resistance mechanism to fomesafen in Amaranthus retroflexus L. Huang Z; Cui H; Wang C; Wu T; Zhang C; Huang H; Wei S Pestic Biochem Physiol; 2020 May; 165():104560. PubMed ID: 32359536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]