These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Ontogenetic variability in the feeding behavior of a marine amphipod in response to ocean acidification. Benítez S; Duarte C; López J; Manríquez PH; Navarro JM; Bonta CC; Torres R; Quijón PA Mar Pollut Bull; 2016 Nov; 112(1-2):375-379. PubMed ID: 27436354 [TBL] [Abstract][Full Text] [Related]
3. Direct and indirect effects of ocean acidification and warming on a marine plant-herbivore interaction. Poore AG; Graba-Landry A; Favret M; Sheppard Brennand H; Byrne M; Dworjanyn SA Oecologia; 2013 Nov; 173(3):1113-24. PubMed ID: 23673470 [TBL] [Abstract][Full Text] [Related]
4. Direct and indirect impacts of ocean acidification and warming on algae-herbivore interactions in intertidal habitats. Benítez S; Navarro JM; Mardones D; Villanueva PA; Ramirez-Kushel F; Torres R; Lagos NA Mar Pollut Bull; 2023 Oct; 195():115549. PubMed ID: 37729690 [TBL] [Abstract][Full Text] [Related]
5. Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory. Rich WA; Schubert N; Schläpfer N; Carvalho VF; Horta ACL; Horta PA Mar Environ Res; 2018 Nov; 142():100-107. PubMed ID: 30293660 [TBL] [Abstract][Full Text] [Related]
6. Elevated pCO Fieber AM; Bourdeau PE Mar Pollut Bull; 2021 Jul; 168():112377. PubMed ID: 33901905 [TBL] [Abstract][Full Text] [Related]
7. Boosted nutritional quality of food by CO Leung JYS; Nagelkerken I; Russell BD; Ferreira CM; Connell SD Sci Total Environ; 2018 Oct; 639():360-366. PubMed ID: 29791888 [TBL] [Abstract][Full Text] [Related]
8. Interaction strength between different grazers and macroalgae mediated by ocean acidification over warming gradients. Sampaio E; Rodil IF; Vaz-Pinto F; Fernández A; Arenas F Mar Environ Res; 2017 Apr; 125():25-33. PubMed ID: 28088495 [TBL] [Abstract][Full Text] [Related]
9. Assessment of the environmental impacts of ocean acidification (OA) and carbon capture and storage (CCS) leaks using the amphipod Hyale youngi. Goulding TA; De Orte MR; Szalaj D; Basallote MD; DelValls TA; Cesar A Ecotoxicology; 2017 May; 26(4):521-533. PubMed ID: 28315979 [TBL] [Abstract][Full Text] [Related]
10. Future warming and acidification effects on anti-fouling and anti-herbivory traits of the brown alga Fucus vesiculosus (Phaeophyceae). Raddatz S; Guy-Haim T; Rilov G; Wahl M J Phycol; 2017 Feb; 53(1):44-58. PubMed ID: 27711971 [TBL] [Abstract][Full Text] [Related]
11. Transgenerational exposure to ocean acidification induces biochemical distress in a keystone amphipod species (Gammarus locusta). Lopes AR; Borges FO; Figueiredo C; Sampaio E; Diniz M; Rosa R; Grilo TF Environ Res; 2019 Mar; 170():168-177. PubMed ID: 30583126 [TBL] [Abstract][Full Text] [Related]
12. How ocean acidification can benefit calcifiers. Connell SD; Doubleday ZA; Hamlyn SB; Foster NR; Harley CDG; Helmuth B; Kelaher BP; Nagelkerken I; Sarà G; Russell BD Curr Biol; 2017 Feb; 27(3):R95-R96. PubMed ID: 28171763 [TBL] [Abstract][Full Text] [Related]
13. Climate drivers and animal host use determine kelp performance over decadal scales in the kelp Pleurophycus gardneri (Laminariales, Phaeophyceae). Pfister CA; Betcher SP J Phycol; 2018 Feb; 54(1):1-11. PubMed ID: 29072316 [TBL] [Abstract][Full Text] [Related]
14. The influence of microplastics pollution on the feeding behavior of a prominent sandy beach amphipod, Orchestoidea tuberculata (Nicolet, 1849). Carrasco A; Pulgar J; Quintanilla-Ahumada D; Perez-Venegas D; Quijón PA; Duarte C Mar Pollut Bull; 2019 Aug; 145():23-27. PubMed ID: 31590781 [TBL] [Abstract][Full Text] [Related]
15. Ocean acidification alters shellfish-algae nutritional value and delivery. Jia R; Yin M; Feng X; Chen C; Qu C; Liu L; Li P; Li ZH Sci Total Environ; 2024 Mar; 918():170841. PubMed ID: 38340841 [TBL] [Abstract][Full Text] [Related]
16. Tropical CO Allen R; Foggo A; Fabricius K; Balistreri A; Hall-Spencer JM Mar Pollut Bull; 2017 Nov; 124(2):607-613. PubMed ID: 28040252 [TBL] [Abstract][Full Text] [Related]
17. Resilience of the larval slipper limpet Crepidula onyx to direct and indirect-diet effects of ocean acidification. Maboloc EA; Chan KYK Sci Rep; 2017 Sep; 7(1):12062. PubMed ID: 28935906 [TBL] [Abstract][Full Text] [Related]
18. Effects of ocean acidification on the biochemistry, physiology and parental transfer of Ampelisca brevicornis (Costa, 1853). Bhuiyan MKA; Rodríguez BM; Billah MM; Pires A; Freitas R; Conradi M Environ Pollut; 2022 Jan; 293():118549. PubMed ID: 34813884 [TBL] [Abstract][Full Text] [Related]
20. Assessing the influence of ocean acidification to marine amphipods: A comparative study. Passarelli MC; Riba I; Cesar A; Serrano-Bernando F; DelValls TA Sci Total Environ; 2017 Oct; 595():759-768. PubMed ID: 28407593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]