These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 26453653)

  • 21. Deletion of the Tetrahymena thermophila rDNA replication fork barrier region disrupts macronuclear rDNA excision and creates a fragile site in the micronuclear genome.
    Yakisich JS; Kapler GM
    Nucleic Acids Res; 2006; 34(2):620-34. PubMed ID: 16449202
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lia1p, a novel protein required during nuclear differentiation for genome-wide DNA rearrangements in Tetrahymena thermophila.
    Rexer CH; Chalker DL
    Eukaryot Cell; 2007 Aug; 6(8):1320-9. PubMed ID: 17586719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A developmentally regulated gene, ASI2, is required for endocycling in the macronuclear anlagen of Tetrahymena.
    Yin L; Gater ST; Karrer KM
    Eukaryot Cell; 2010 Sep; 9(9):1343-53. PubMed ID: 20656911
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tudor nuclease genes and programmed DNA rearrangements in Tetrahymena thermophila.
    Howard-Till RA; Yao MC
    Eukaryot Cell; 2007 Oct; 6(10):1795-804. PubMed ID: 17715366
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-Mendelian, heritable blocks to DNA rearrangement are induced by loading the somatic nucleus of Tetrahymena thermophila with germ line-limited DNA.
    Chalker DL; Yao MC
    Mol Cell Biol; 1996 Jul; 16(7):3658-67. PubMed ID: 8668182
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rearrangement of macronucleus chromosomes correspond to TAD-like structures of micronucleus chromosomes in
    Luo Z; Hu T; Jiang H; Wang R; Xu Q; Zhang S; Cao J; Song X
    Genome Res; 2020 Mar; 30(3):406-414. PubMed ID: 32165395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TIF1 activates the intra-S-phase checkpoint response in the diploid micronucleus and amitotic polyploid macronucleus of Tetrahymena.
    Yakisich JS; Sandoval PY; Morrison TL; Kapler GM
    Mol Biol Cell; 2006 Dec; 17(12):5185-97. PubMed ID: 17005912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptome analysis of the binucleate ciliate
    Zhang L; Cervantes MD; Pan S; Lindsley J; Dabney A; Kapler GM
    Mol Biol Cell; 2023 Feb; 34(2):rs1. PubMed ID: 36475712
    [No Abstract]   [Full Text] [Related]  

  • 29. Germ line transcripts are processed by a Dicer-like protein that is essential for developmentally programmed genome rearrangements of Tetrahymena thermophila.
    Malone CD; Anderson AM; Motl JA; Rexer CH; Chalker DL
    Mol Cell Biol; 2005 Oct; 25(20):9151-64. PubMed ID: 16199890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Subcellular localization and role of Ran1 in Tetrahymena thermophila amitotic macronucleus.
    Liang H; Xu J; Zhao D; Tian H; Yang X; Liang A; Wang W
    FEBS J; 2012 Jul; 279(14):2520-33. PubMed ID: 22594798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of ATG8 and autophagy in programmed nuclear degradation in Tetrahymena thermophila.
    Liu ML; Yao MC
    Eukaryot Cell; 2012 Apr; 11(4):494-506. PubMed ID: 22366125
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of micronucleus-limited DNA in programmed deletion of mse2.9 during macronuclear development of Tetrahymena thermophila.
    Fillingham JS; Pearlman RE
    Eukaryot Cell; 2004 Apr; 3(2):288-301. PubMed ID: 15075259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mismatch Repair Protein Msh6
    Wang L; Yang S; Xue Y; Bo T; Xu J; Wang W
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139447
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RAD51 is required for propagation of the germinal nucleus in Tetrahymena thermophila.
    Marsh TC; Cole ES; Stuart KR; Campbell C; Romero DP
    Genetics; 2000 Apr; 154(4):1587-96. PubMed ID: 10747055
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The histone chaperone Nrp1 is required for chromatin stability and nuclear division in Tetrahymena thermophila.
    Lian Y; Hao H; Xu J; Bo T; Liang A; Wang W
    Epigenetics Chromatin; 2021 Jul; 14(1):34. PubMed ID: 34301312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Refined annotation and assembly of the Tetrahymena thermophila genome sequence through EST analysis, comparative genomic hybridization, and targeted gap closure.
    Coyne RS; Thiagarajan M; Jones KM; Wortman JR; Tallon LJ; Haas BJ; Cassidy-Hanley DM; Wiley EA; Smith JJ; Collins K; Lee SR; Couvillion MT; Liu Y; Garg J; Pearlman RE; Hamilton EP; Orias E; Eisen JA; Methé BA
    BMC Genomics; 2008 Nov; 9():562. PubMed ID: 19036158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temporal and spatial association of histone H2A variant hv1 with transcriptionally competent chromatin during nuclear development in Tetrahymena thermophila.
    Stargell LA; Bowen J; Dadd CA; Dedon PC; Davis M; Cook RG; Allis CD; Gorovsky MA
    Genes Dev; 1993 Dec; 7(12B):2641-51. PubMed ID: 8276246
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Manipulating ciliary protein-encoding genes in Tetrahymena thermophila.
    Dave D; Wloga D; Gaertig J
    Methods Cell Biol; 2009; 93():1-20. PubMed ID: 20409809
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Developmental regulation of the Tetrahymena thermophila origin recognition complex.
    Lee PH; Meng X; Kapler GM
    PLoS Genet; 2015 Jan; 11(1):e1004875. PubMed ID: 25569357
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Four distinct and unusual linker proteins in a mitotically dividing nucleus are derived from a 71-kilodalton polyprotein, lack p34cdc2 sites, and contain protein kinase A sites.
    Wu M; Allis CD; Sweet MT; Cook RG; Thatcher TH; Gorovsky MA
    Mol Cell Biol; 1994 Jan; 14(1):10-20. PubMed ID: 8264578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.