BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 26453802)

  • 21. Structure and energetics of an allele-specific genetic interaction between dnaJ and dnaK: correlation of nuclear magnetic resonance chemical shift perturbations in the J-domain of Hsp40/DnaJ with binding affinity for the ATPase domain of Hsp70/DnaK.
    Landry SJ
    Biochemistry; 2003 May; 42(17):4926-36. PubMed ID: 12718534
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oligomeric Hsp33 with enhanced chaperone activity: gel filtration, cross-linking, and small angle x-ray scattering (SAXS) analysis.
    Akhtar MW; Srinivas V; Raman B; Ramakrishna T; Inobe T; Maki K; Arai M; Kuwajima K; Rao ChM
    J Biol Chem; 2004 Dec; 279(53):55760-9. PubMed ID: 15494414
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redox-regulated molecular chaperones.
    Graf PC; Jakob U
    Cell Mol Life Sci; 2002 Oct; 59(10):1624-31. PubMed ID: 12475172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of novel sequence motifs within N- and C-terminal extensions of p26, a small heat shock protein from Artemia franciscana.
    Sun Y; MacRae TH
    FEBS J; 2005 Oct; 272(20):5230-43. PubMed ID: 16218954
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Defining Hsp33's Redox-regulated Chaperone Activity and Mapping Conformational Changes on Hsp33 Using Hydrogen-deuterium Exchange Mass Spectrometry.
    Fassler R; Edinger N; Rimon O; Reichmann D
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 29939186
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of a redox-regulated chaperone network.
    Hoffmann JH; Linke K; Graf PC; Lilie H; Jakob U
    EMBO J; 2004 Jan; 23(1):160-8. PubMed ID: 14685279
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solution structure of the cysteine-rich domain of the Escherichia coli chaperone protein DnaJ.
    Martinez-Yamout M; Legge GB; Zhang O; Wright PE; Dyson HJ
    J Mol Biol; 2000 Jul; 300(4):805-18. PubMed ID: 10891270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Role of Metastable Regions and Their Connectivity in the Inactivation of a Redox-Regulated Chaperone and Its Inter-Chaperone Crosstalk.
    Rimon O; Suss O; Goldenberg M; Fassler R; Yogev O; Amartely H; Propper G; Friedler A; Reichmann D
    Antioxid Redox Signal; 2017 Nov; 27(15):1252-1267. PubMed ID: 28394178
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermostabilization of glutamate decarboxylase B from Escherichia coli by structure-guided design of its pH-responsive N-terminal interdomain.
    Jun C; Joo JC; Lee JH; Kim YH
    J Biotechnol; 2014 Mar; 174():22-8. PubMed ID: 24480573
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The cold atmospheric pressure plasma-generated species superoxide, singlet oxygen and atomic oxygen activate the molecular chaperone Hsp33.
    Dirks T; Krewing M; Vogel K; Bandow JE
    J R Soc Interface; 2023 Oct; 20(207):20230300. PubMed ID: 37876273
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-resolution structures of Escherichia coli cDsbD in different redox states: A combined crystallographic, biochemical and computational study.
    Stirnimann CU; Rozhkova A; Grauschopf U; Böckmann RA; Glockshuber R; Capitani G; Grütter MG
    J Mol Biol; 2006 May; 358(3):829-45. PubMed ID: 16545842
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein unfolding as a switch from self-recognition to high-affinity client binding.
    Groitl B; Horowitz S; Makepeace KAT; Petrotchenko EV; Borchers CH; Reichmann D; Bardwell JCA; Jakob U
    Nat Commun; 2016 Jan; 7():10357. PubMed ID: 26787517
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The redox-switch domain of Hsp33 functions as dual stress sensor.
    Ilbert M; Horst J; Ahrens S; Winter J; Graf PC; Lilie H; Jakob U
    Nat Struct Mol Biol; 2007 Jun; 14(6):556-63. PubMed ID: 17515905
    [TBL] [Abstract][Full Text] [Related]  

  • 34. M domains couple the ClpB threading motor with the DnaK chaperone activity.
    Haslberger T; Weibezahn J; Zahn R; Lee S; Tsai FT; Bukau B; Mogk A
    Mol Cell; 2007 Jan; 25(2):247-60. PubMed ID: 17244532
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical insights into the mechanism of redox switch in heat shock protein Hsp33.
    Enescu M; Kassim R; Ramseyer C; Cardey B
    J Biol Inorg Chem; 2015 Apr; 20(3):555-62. PubMed ID: 25637463
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A model for heterooligomer formation in the heat shock response of Escherichia coli.
    Healy EF
    Biochem Biophys Res Commun; 2012 Apr; 420(3):639-43. PubMed ID: 22450329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. GrpE N-terminal domain contributes to the interaction with Dnak and modulates the dynamics of the chaperone substrate binding domain.
    Moro F; Taneva SG; Velázquez-Campoy A; Muga A
    J Mol Biol; 2007 Dec; 374(4):1054-64. PubMed ID: 17976642
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chaperone activity with a redox switch.
    Jakob U; Muse W; Eser M; Bardwell JC
    Cell; 1999 Feb; 96(3):341-52. PubMed ID: 10025400
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structures of E. coli CcmG and its mutants reveal key roles of the N-terminal beta-sheet and the fingerprint region.
    Ouyang N; Gao YG; Hu HY; Xia ZX
    Proteins; 2006 Dec; 65(4):1021-31. PubMed ID: 17019698
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and dynamics of the iron-sulfur cluster assembly scaffold protein IscU and its interaction with the cochaperone HscB.
    Kim JH; Füzéry AK; Tonelli M; Ta DT; Westler WM; Vickery LE; Markley JL
    Biochemistry; 2009 Jul; 48(26):6062-71. PubMed ID: 19492851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.