These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
365 related articles for article (PubMed ID: 26453865)
21. Water-induced physical gelation of organic solvents by N-(n-alkylcarbamoyl)-L-alanine amphiphiles. Pal A; Dey J Langmuir; 2011 Apr; 27(7):3401-8. PubMed ID: 21351761 [TBL] [Abstract][Full Text] [Related]
22. Development and Characterization of Ethylcellulose Oleogels Based on Pumpkin Seed Oil and Rapeseed Oil. Ursachi CȘ; Perța-Crișan S; Tolan I; Chambre DR; Chereji BD; Condrat D; Munteanu FD Gels; 2024 Jun; 10(6):. PubMed ID: 38920930 [TBL] [Abstract][Full Text] [Related]
23. Investigation of the influence of minor components and fatty acid profile of oil on properties of beeswax and stearic acid-based oleogels. Sivakanthan S; Fawzia S; Mundree S; Madhujith T; Karim A Food Res Int; 2024 May; 184():114213. PubMed ID: 38609212 [TBL] [Abstract][Full Text] [Related]
24. Viscoelastic behavior of cellulose acetate in a mixed solvent system. Appaw C; Gilbert RD; Khan SA; Kadla JF Biomacromolecules; 2007 May; 8(5):1541-7. PubMed ID: 17458930 [TBL] [Abstract][Full Text] [Related]
25. Development of novel nonaqueous ethylcellulose gel matrices: rheological and mechanical characterization. Heng PW; Chan LW; Chow KT Pharm Res; 2005 Apr; 22(4):676-84. PubMed ID: 15846476 [TBL] [Abstract][Full Text] [Related]
26. Responsive Emulsion Gels with Tunable Properties Formed by Self-Assembled Nanofibrils of Natural Saponin Glycyrrhizic Acid for Oil Structuring. Wan Z; Sun Y; Ma L; Yang X; Guo J; Yin S J Agric Food Chem; 2017 Mar; 65(11):2394-2405. PubMed ID: 28267916 [TBL] [Abstract][Full Text] [Related]
27. Protein Oleogels from Protein Hydrogels via a Stepwise Solvent Exchange Route. de Vries A; Hendriks J; van der Linden E; Scholten E Langmuir; 2015 Dec; 31(51):13850-9. PubMed ID: 26646108 [TBL] [Abstract][Full Text] [Related]
28. Edible oleogels: an opportunity for fat replacement in foods. Martins AJ; Vicente AA; Cunha RL; Cerqueira MA Food Funct; 2018 Feb; 9(2):758-773. PubMed ID: 29417124 [TBL] [Abstract][Full Text] [Related]
29. Oleogels from sodium stearoyl lactylate-based lamellar crystals: Structural characterization and bread application. Meng Z; Guo Y; Wang Y; Liu Y Food Chem; 2019 Sep; 292():134-142. PubMed ID: 31054657 [TBL] [Abstract][Full Text] [Related]
30. Macroscopic properties and microstructure of HSA based organogels: sensitivity to polar additives. Burkhardt M; Kinzel S; Gradzielski M J Colloid Interface Sci; 2009 Mar; 331(2):514-21. PubMed ID: 19144353 [TBL] [Abstract][Full Text] [Related]
31. Development of innovative ethyl cellulose-hydroxypropyl methylcellulose biopolymer oleogels as low saturation fat replacers: Physical, rheological and microstructural characteristics. Naeli MH; Milani JM; Farmani J; Zargaraan A Int J Biol Macromol; 2020 Aug; 156():792-804. PubMed ID: 32302632 [TBL] [Abstract][Full Text] [Related]
32. Effects of process parameters on the properties of biocompatible ibuprofen-loaded microcapsules. Valot P; Baba M; Nedelec JM; Sintes-Zydowicz N Int J Pharm; 2009 Mar; 369(1-2):53-63. PubMed ID: 19084583 [TBL] [Abstract][Full Text] [Related]
33. Food-grade emulsion gels and oleogels prepared by all-natural dual nanofibril system from citrus fiber and glycyrrhizic acid. Zhang S; Du R; Li Q; Xu M; Yang Y; Fang S; Wan Z; Yang X Food Res Int; 2024 Sep; 192():114830. PubMed ID: 39147519 [TBL] [Abstract][Full Text] [Related]
34. The role of edible oils in low molecular weight organogels rheology and structure. Lupi FR; De Santo MP; Ciuchi F; Baldino N; Gabriele D Food Res Int; 2018 Sep; 111():399-407. PubMed ID: 30007702 [TBL] [Abstract][Full Text] [Related]
35. Polysaccharide-based oleogels prepared with an emulsion-templated approach. Patel AR; Cludts N; Bin Sintang MD; Lewille B; Lesaffer A; Dewettinck K Chemphyschem; 2014 Nov; 15(16):3435-9. PubMed ID: 25123287 [TBL] [Abstract][Full Text] [Related]
36. Nonsolvent-induced phase separation of poly(3-hydroxybutyrate) and poly(hydroxybutyrate-co-hydroxyvalerate) blend as a facile platform to fabricate versatile nanofiber gels: Aero-, hydro-, and oleogels. Kang J; Choi J; Yun SI Int J Biol Macromol; 2021 Mar; 173():44-55. PubMed ID: 33482207 [TBL] [Abstract][Full Text] [Related]
37. Utilization of Oleogels as a Replacement for Solid Fat in Aerated Baked Goods: Physicochemical, Rheological, and Tomographic Characterization. Kim JY; Lim J; Lee J; Hwang HS; Lee S J Food Sci; 2017 Feb; 82(2):445-452. PubMed ID: 28140465 [TBL] [Abstract][Full Text] [Related]
38. Influence of the concentration of a gelling agent and the type of surfactant on the rheological characteristics of oleogels. Ruíz Martínez MA; Muñoz de Benavides M; Morales Hernández ME; Gallardo Lara V Farmaco; 2003 Dec; 58(12):1289-94. PubMed ID: 14630241 [TBL] [Abstract][Full Text] [Related]
39. Solvent exchange-induced in situ forming gel comprising ethyl cellulose-antimicrobial drugs. Phaechamud T; Mahadlek J Int J Pharm; 2015 Oct; 494(1):381-92. PubMed ID: 26302862 [TBL] [Abstract][Full Text] [Related]
40. Formation, characterization, and potential food application of rice bran wax oleogels: Expeller-pressed corn germ oil versus refined corn oil. Zhao M; Lan Y; Cui L; Monono E; Rao J; Chen B Food Chem; 2020 Mar; 309():125704. PubMed ID: 31699556 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]