These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26453987)

  • 1. Intracranial neuronal ensemble recordings and analysis in epilepsy.
    Tóth E; Fabó D; Entz L; Ulbert I; Erőss L
    J Neurosci Methods; 2016 Feb; 260():261-9. PubMed ID: 26453987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates.
    Barz F; Livi A; Lanzilotto M; Maranesi M; Bonini L; Paul O; Ruther P
    J Neural Eng; 2017 Jun; 14(3):036010. PubMed ID: 28102825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes.
    Otto KJ; Johnson MD; Kipke DR
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic microelectrode investigations of normal human brain physiology using a hybrid depth electrode.
    Howard MA; Volkov IO; Noh MD; Granner MA; Mirsky R; Garell PC
    Stereotact Funct Neurosurg; 1997; 68(1-4 Pt 1):236-42. PubMed ID: 9711723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping and assessment of epileptogenic foci using frequency-entropy templates.
    Ben-Jacob E; Doron I; Gazit T; Rephaeli E; Sagher O; Towle VL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051903. PubMed ID: 18233683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ellen R. Grass Lecture: extraordinary EEG.
    Tatum WO
    Neurodiagn J; 2014 Mar; 54(1):3-21. PubMed ID: 24783746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping interictal oscillations greater than 200 Hz recorded with intracranial macroelectrodes in human epilepsy.
    Crépon B; Navarro V; Hasboun D; Clemenceau S; Martinerie J; Baulac M; Adam C; Le Van Quyen M
    Brain; 2010 Jan; 133(Pt 1):33-45. PubMed ID: 19920064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cortical recording platform utilizing microECoG electrode arrays.
    Kim J; Wilson JA; Williams JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5353-7. PubMed ID: 18003217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding ensemble activity from neurophysiological recordings in the temporal cortex.
    Kreiman G
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5904-7. PubMed ID: 22255683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling cortical source dynamics and interactions during seizure.
    Mullen T; Acar ZA; Worrell G; Makeig S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1411-4. PubMed ID: 22254582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological mapping of cat primary auditory cortex with multielectrode arrays.
    Kim SJ; Manyam SC; Warren DJ; Normann RA
    Ann Biomed Eng; 2006 Feb; 34(2):300-9. PubMed ID: 16496084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Initial surgical experience with a dense cortical microarray in epileptic patients undergoing craniotomy for subdural electrode implantation.
    Waziri A; Schevon CA; Cappell J; Emerson RG; McKhann GM; Goodman RR
    Neurosurgery; 2009 Mar; 64(3):540-5; discussion 545. PubMed ID: 19240617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An optimization approach to recognition of epileptogenic data using neural networks with simplified input layers.
    Ayala M; Adjouadi M; Yaylali I; Jayakar P
    Biomed Sci Instrum; 2004; 40():181-6. PubMed ID: 15133955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and testing of microelectrodes for small-field cortical surface recordings.
    Kitzmiller J; Beversdorf D; Hansford D
    Biomed Microdevices; 2006 Mar; 8(1):81-5. PubMed ID: 16491335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective recording of the canine hypoglossal nerve using a multicontact flat interface nerve electrode.
    Yoo PB; Durand DM
    IEEE Trans Biomed Eng; 2005 Aug; 52(8):1461-9. PubMed ID: 16119242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo validation of the electronic depth control probes.
    Dombovári B; Fiáth R; Kerekes BP; Tóth E; Wittner L; Horváth D; Seidl K; Herwik S; Torfs T; Paul O; Ruther P; Neves H; Ulbert I
    Biomed Tech (Berl); 2014 Aug; 59(4):283-9. PubMed ID: 24114890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A physiologically plausible spatio-temporal model for EEG signals recorded with intracerebral electrodes in human partial epilepsy.
    Cosandier-Rimélé D; Badier JM; Chauvel P; Wendling F
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):380-8. PubMed ID: 17355049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microelectrode array on folding polyimide ribbon for epidural mapping of functional evoked potentials.
    Takahashi H; Ejiri T; Nakao M; Nakamura N; Kaga K; Hervé T
    IEEE Trans Biomed Eng; 2003 Apr; 50(4):510-6. PubMed ID: 12723063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A statistical method for predicting seizure onset zones from human single-neuron recordings.
    Valdez AB; Hickman EN; Treiman DM; Smith KA; Steinmetz PN
    J Neural Eng; 2013 Feb; 10(1):016001. PubMed ID: 23220865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.