BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 26454038)

  • 1. Assessment of the functionality and stability of detergent purified nAChR from Torpedo using lipidic matrixes and macroscopic electrophysiology.
    Padilla-Morales LF; Colón-Sáez JO; González-Nieves JE; Quesada-González O; Lasalde-Dominicci JA
    Biochim Biophys Acta; 2016 Jan; 1858(1):47-56. PubMed ID: 26454038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of lipid-analog detergent solubilization on the functionality and lipidic cubic phase mobility of the Torpedo californica nicotinic acetylcholine receptor.
    Padilla-Morales LF; Morales-Pérez CL; De La Cruz-Rivera PC; Asmar-Rovira G; Báez-Pagán CA; Quesada O; Lasalde-Dominicci JA
    J Membr Biol; 2011 Oct; 243(1-3):47-58. PubMed ID: 21922299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of Purity, Functionality, Stability, and Lipid Composition of Cyclofos-nAChR-Detergent Complexes from Torpedo californica Using Lipid Matrix and Macroscopic Electrophysiology.
    Quesada O; González-Nieves JE; Colón J; Maldonado-Hernández R; González-Freire C; Acevedo-Cintrón J; Rosado-Millán ID; Lasalde-Dominicci JA
    J Membr Biol; 2023 Jun; 256(3):271-285. PubMed ID: 37140614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncovering the lipidic basis for the preparation of functional nicotinic acetylcholine receptor detergent complexes for structural studies.
    Quesada O; González-Freire C; Ferrer MC; Colón-Sáez JO; Fernández-García E; Mercado J; Dávila A; Morales R; Lasalde-Dominicci JA
    Sci Rep; 2016 Sep; 6():32766. PubMed ID: 27641515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential purification and characterization of Torpedo californica nAChR-DC supplemented with CHS for high-resolution crystallization studies.
    Maldonado-Hernández R; Quesada O; Colón-Sáez JO; Lasalde-Dominicci JA
    Anal Biochem; 2020 Dec; 610():113887. PubMed ID: 32763308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionality and stability data of detergent purified nAChR from Torpedo using lipidic matrixes and macroscopic electrophysiology.
    Padilla-Morales LF; Colón-Sáez JO; González-Nieves JE; Quesada-González O; Lasalde-Dominicci JA
    Data Brief; 2016 Mar; 6():433-7. PubMed ID: 26870753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biophysical and ion channel functional characterization of the Torpedo californica nicotinic acetylcholine receptor in varying detergent-lipid environments.
    Asmar-Rovira GA; Asseo-García AM; Quesada O; Hanson MA; Cheng A; Nogueras C; Lasalde-Dominicci JA; Stevens RC
    J Membr Biol; 2008 May; 223(1):13-26. PubMed ID: 18581036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous Inhibition in Macroscopic Current Responses of Four Nicotinic Acetylcholine Receptor Subtypes by Cholesterol Enrichment.
    Báez-Pagán CA; Del Hoyo-Rivera N; Quesada O; Otero-Cruz JD; Lasalde-Dominicci JA
    J Membr Biol; 2016 Aug; 249(4):539-49. PubMed ID: 27116687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of nicotinic acetylcholine receptor channel by pH: a difference in pH sensitivity of Torpedo and mouse receptors expressed in Xenopus oocytes.
    Li L; McNamee MG
    Cell Mol Neurobiol; 1992 Apr; 12(2):83-93. PubMed ID: 1600556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biophysical characterization dataset of native nicotinic acetylcholine receptor in lipid-like detergent complexes.
    Maldonado-Hernández R; Quesada O; Lasalde-Dominicci JA
    Data Brief; 2020 Oct; 32():106230. PubMed ID: 32939382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mouse-Torpedo chimeric alpha-subunit used to probe channel-gating determinants on the nicotinic acetylcholine receptor primary sequence.
    Butler DH; Lasalde JA; Butler JK; Tamamizu S; Zimmerman G; McNamee MG
    Cell Mol Neurobiol; 1997 Feb; 17(1):13-33. PubMed ID: 9118205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional reconstitution of the nicotinic acetylcholine receptor by CHAPS dialysis depends on the concentrations of salt, lipid, and protein.
    Schürholz T; Kehne J; Gieselmann A; Neumann E
    Biochemistry; 1992 Jun; 31(21):5067-77. PubMed ID: 1599929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The acetylcholinesterase inhibitor BW284c51 is a potent blocker of Torpedo nicotinic AchRs incorporated into the Xenopus oocyte membrane.
    Olivera-Bravo S; Ivorra I; Morales A
    Br J Pharmacol; 2005 Jan; 144(1):88-97. PubMed ID: 15644872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of glycosylation and membrane environment in nicotinic acetylcholine receptor stability.
    daCosta CJ; Kaiser DE; Baenziger JE
    Biophys J; 2005 Mar; 88(3):1755-64. PubMed ID: 15626708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput crystallization of membrane proteins using the lipidic bicelle method.
    Ujwal R; Abramson J
    J Vis Exp; 2012 Jan; (59):e3383. PubMed ID: 22257923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical dependence of the solubilization of lipid vesicles by the detergent CHAPS on the lipid composition. Functional reconstitution of the nicotinic acetylcholine receptor into preformed vesicles above the critical micellization concentration.
    Schürholz T
    Biophys Chem; 1996 Jan; 58(1-2):87-96. PubMed ID: 8679921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential role of caveolin-1-positive domains in the regulation of the acetylcholine receptor's activatable pool: implications in the pathogenesis of a novel congenital myasthenic syndrome.
    Báez-Pagán CA; Martínez-Ortiz Y; Otero-Cruz JD; Salgado-Villanueva IK; Velázquez G; Ortiz-Acevedo A; Quesada O; Silva WI; Lasalde-Dominicci JA
    Channels (Austin); 2008; 2(3):180-90. PubMed ID: 18836288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the agonist-binding sites of the Torpedo nicotinic acetylcholine receptor: affinity-labeling and mutational analyses identify gamma Tyr-111/delta Arg-113 as antagonist affinity determinants.
    Chiara DC; Xie Y; Cohen JB
    Biochemistry; 1999 May; 38(20):6689-98. PubMed ID: 10350488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass spectrometry of nicotinic acetylcholine receptors and associated proteins as models for complex transmembrane proteins.
    Lukas RJ; Tubbs KA; Krivoshein AV; Bieber AL; Nelson RW
    Anal Biochem; 2002 Feb; 301(2):175-88. PubMed ID: 11814288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the structure of the affinity-purified and lipid-reconstituted torpedo nicotinic acetylcholine receptor.
    Hamouda AK; Chiara DC; Blanton MP; Cohen JB
    Biochemistry; 2008 Dec; 47(48):12787-94. PubMed ID: 18991407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.