These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 26454048)
1. Hydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regeneration. Subramaniam S; Fang YH; Sivasubramanian S; Lin FH; Lin CP Biomaterials; 2016 Jan; 74():99-108. PubMed ID: 26454048 [TBL] [Abstract][Full Text] [Related]
2. Biomechanical evaluation of the rabbit tibia after implantation of porous hydroxyapatite/collagen in a rabbit model. Masaoka T; Yamada T; Yuasa M; Yoshii T; Okawa A; Morita S; Kozaka Y; Hirano M; Sotome S J Orthop Sci; 2016 Mar; 21(2):230-6. PubMed ID: 26778623 [TBL] [Abstract][Full Text] [Related]
3. Reconstruction of calvarial bone defects using poly(amino acid)/hydroxyapatite/calcium sulfate composite. Fan X; Peng H; Li H; Yan Y J Biomater Sci Polym Ed; 2019 Feb; 30(2):107-121. PubMed ID: 30518309 [TBL] [Abstract][Full Text] [Related]
4. Mechanics, degradability, bioactivity, in vitro, and in vivo biocompatibility evaluation of poly(amino acid)/hydroxyapatite/calcium sulfate composite for potential load-bearing bone repair. Fan X; Ren H; Luo X; Wang P; Lv G; Yuan H; Li H; Yan Y J Biomater Appl; 2016 Mar; 30(8):1261-72. PubMed ID: 26635202 [TBL] [Abstract][Full Text] [Related]
5. Efficacy and safety of porous hydroxyapatite/type 1 collagen composite implantation for bone regeneration: A randomized controlled study. Sotome S; Ae K; Okawa A; Ishizuki M; Morioka H; Matsumoto S; Nakamura T; Abe S; Beppu Y; Shinomiya K J Orthop Sci; 2016 May; 21(3):373-80. PubMed ID: 26961287 [TBL] [Abstract][Full Text] [Related]
6. Asprin-loaded strontium-containing α-calcium sulphate hemihydrate/nano-hydroxyapatite composite promotes regeneration of critical bone defects. Jiang Y; Qin H; Wan H; Yang J; Yu Q; Jiang M; Yu B J Cell Mol Med; 2020 Dec; 24(23):13690-13702. PubMed ID: 33159499 [TBL] [Abstract][Full Text] [Related]
7. Zirconia-hydroxyapatite composite material with micro porous structure. Matsumoto TJ; An SH; Ishimoto T; Nakano T; Matsumoto T; Imazato S Dent Mater; 2011 Nov; 27(11):e205-12. PubMed ID: 21816461 [TBL] [Abstract][Full Text] [Related]
8. Effect of a calcium sulfate implant with calcium sulfate barrier on periodontal healing in 3-wall intrabony defects in dogs. Kim CK; Kim HY; Chai JK; Cho KS; Moon IS; Choi SH; Sottosanti JS; Wikesjö UM J Periodontol; 1998 Sep; 69(9):982-8. PubMed ID: 9776026 [TBL] [Abstract][Full Text] [Related]
9. Dimensional stability of the alveolar ridge after implantation of a bioabsorbable bone graft substitute: a radiographic and histomorphometric study in rats. Hile DD; Sonis ST; Doherty SA; Tian X; Zhang Q; Jee WS; Trantolo DJ J Oral Implantol; 2005; 31(2):68-76. PubMed ID: 15871525 [TBL] [Abstract][Full Text] [Related]
10. Alveolar bone regeneration around immediate implants using an injectable nHAC/CSH loaded with autogenic blood-acquired mesenchymal progenitor cells: an experimental study in the dog mandible. Han X; Liu H; Wang D; Su F; Zhang Y; Zhou W; Li S; Yang R Clin Implant Dent Relat Res; 2013 Jun; 15(3):390-401. PubMed ID: 21745333 [TBL] [Abstract][Full Text] [Related]
11. Osteoinduction and -conduction through absorbable bone substitute materials based on calcium sulfate: in vivo biological behavior in a rabbit model. Pförringer D; Harrasser N; Mühlhofer H; Kiokekli M; Stemberger A; van Griensven M; Lucke M; Burgkart R; Obermeier A J Mater Sci Mater Med; 2018 Jan; 29(2):17. PubMed ID: 29318379 [TBL] [Abstract][Full Text] [Related]
12. Comparison of the bone augmentation ability of absorbable collagen sponge with that of hydroxyapatite/collagen composite. Ozawa Y; Kubota T; Yamamoto T; Tsukune N; Koshi R; Nishida T; Asano M; Sato S J Oral Sci; 2018 Dec; 60(4):514-518. PubMed ID: 30369559 [TBL] [Abstract][Full Text] [Related]
13. Effect of chitosan as a dispersant on collagen-hydroxyapatite composite matrices. Zhang L; Tang P; Zhang W; Xu M; Wang Y Tissue Eng Part C Methods; 2010 Feb; 16(1):71-9. PubMed ID: 19364274 [TBL] [Abstract][Full Text] [Related]
14. In vivo evaluation of β-CS/n-HA with different physical properties as a new bone graft material. Elkholy S; Yahia S; Awad M; Elmessiery M Clin Implant Dent Relat Res; 2018 Jun; 20(3):416-423. PubMed ID: 29479806 [TBL] [Abstract][Full Text] [Related]
15. Bone formation with various bone graft substitutes in critical-sized rat calvarial defect. Park JW; Jang JH; Bae SR; An CH; Suh JY Clin Oral Implants Res; 2009 Apr; 20(4):372-8. PubMed ID: 19309771 [TBL] [Abstract][Full Text] [Related]
16. Comparison of in vitro and in vivo bioactivity: cuttlefish-bone-derived hydroxyapatite and synthetic hydroxyapatite granules as a bone graft substitute. Kim BS; Kang HJ; Yang SS; Lee J Biomed Mater; 2014 Apr; 9(2):025004. PubMed ID: 24487123 [TBL] [Abstract][Full Text] [Related]
17. Optimized bone regeneration based on sustained release from three-dimensional fibrous PLGA/HAp composite scaffolds loaded with BMP-2. Fu YC; Nie H; Ho ML; Wang CK; Wang CH Biotechnol Bioeng; 2008 Mar; 99(4):996-1006. PubMed ID: 17879301 [TBL] [Abstract][Full Text] [Related]
18. Characteristics of calcium sulfate/gelatin composite biomaterials for bone repair. Gao C; Huo S; Li X; You X; Zhang Y; Gao J J Biomater Sci Polym Ed; 2007; 18(7):799-824. PubMed ID: 17688742 [TBL] [Abstract][Full Text] [Related]