BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 26454112)

  • 41. Immobilization of levan-xylanase nanohybrid on an alginate bead improves xylanase stability at wide pH and temperature.
    Jampala P; Preethi M; Ramanujam S; Harish BS; Uppuluri KB; Anbazhagan V
    Int J Biol Macromol; 2017 Feb; 95():843-849. PubMed ID: 27940337
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Immobilization of Paecilomyces variotii tannase and properties of the immobilized enzyme.
    Schons PF; Lopes FC; Battestin V; Macedo GA
    J Microencapsul; 2011; 28(3):211-9. PubMed ID: 21425946
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Agar-agar entrapment increases the stability of endo-β-1,4-xylanase for repeated biodegradation of xylan.
    Bibi Z; Shahid F; Ul Qader SA; Aman A
    Int J Biol Macromol; 2015 Apr; 75():121-7. PubMed ID: 25603143
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of dextransucrase immobilized on calcium alginate beads from Leuconostoc mesenteroides PCSIR-4.
    Ul Qader SA; Aman A; Syed N; Bano S; Azhar A
    Ital J Biochem; 2007 Jun; 56(2):158-62. PubMed ID: 17722657
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Immobilization of polygalacturonase from Aspergillus niger onto activated polyethylene and its application in apple juice clarification.
    Saxena S; Shukla S; Thakur A; Gupta R
    Acta Microbiol Immunol Hung; 2008 Mar; 55(1):33-51. PubMed ID: 18507150
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Micro- and nano-capsulated fungal pectinase with outstanding capabilities of eliminating turbidity in freshly produced juice.
    Mahmoud KF; Abo-Elmagd HI; Housseiny MM
    Food Sci Technol Int; 2018 Jun; 24(4):330-340. PubMed ID: 29357691
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Immobilization of Saccharomyces cerevisiae alcohol dehydrogenase on hybrid alginate-chitosan beads.
    Zhou ZD; Li GY; Li YJ
    Int J Biol Macromol; 2010 Jul; 47(1):21-6. PubMed ID: 20398691
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of alginate and pectin based beads for production of poultry probiotic cells.
    Voo WP; Ravindra P; Tey BT; Chan ES
    J Biosci Bioeng; 2011 Mar; 111(3):294-9. PubMed ID: 21216192
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of some biochemical properties of artichoke polyphenol oxidase entrapped in alginate-carrageenan and alginate gels.
    Yagar H; Kocaturk S
    Artif Cells Nanomed Biotechnol; 2014 Aug; 42(4):268-73. PubMed ID: 23795723
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Preparation, characterization and catalytic behavior of pectinase covalently immobilized onto sodium alginate/graphene oxide composite beads.
    Dai XY; Kong LM; Wang XL; Zhu Q; Chen K; Zhou T
    Food Chem; 2018 Jul; 253():185-193. PubMed ID: 29502820
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of two polysaccharide matrices on activity, stability and recycling efficiency of immobilized fungal amyloglucosidase of GH15 family.
    Pervez S; Aman A; Ul Qader SA
    Int J Biol Macromol; 2017 Mar; 96():70-77. PubMed ID: 27956099
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Immobilization of pectin degrading enzyme from Bacillus licheniformis KIBGE IB-21 using agar-agar as a support.
    Rehman HU; Aman A; Zohra RR; Qader SA
    Carbohydr Polym; 2014 Feb; 102():622-6. PubMed ID: 24507327
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microalgal immobilization methods.
    Moreno-Garrido I
    Methods Mol Biol; 2013; 1051():327-47. PubMed ID: 23934815
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Immobilization Increases the Stability and Reusability of Pigeon Pea NADP
    Singh S; Singh AK; Singh MC; Pandey PK
    Protein J; 2017 Feb; 36(1):49-55. PubMed ID: 28176134
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Agar-agar immobilization: An alternative approach for the entrapment of protease to improve the catalytic efficiency, thermal stability and recycling efficiency.
    Sattar H; Aman A; Qader SAU
    Int J Biol Macromol; 2018 May; 111():917-922. PubMed ID: 29415415
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Immobilization of urease from pigeonpea (Cajanus cajan L.) in polyacrylamide gels and calcium alginate beads.
    Das N; Kayastha AM; Malhotra OP
    Biotechnol Appl Biochem; 1998 Feb; 27(1):25-9. PubMed ID: 9477553
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of some properties of free and immobilized alpha-amylase by Aspergillus sclerotiorum in calcium alginate gel beads.
    Yagar H; Ertan F; Balkan B
    Prep Biochem Biotechnol; 2008; 38(1):13-23. PubMed ID: 18080907
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Immobilized lignin peroxidase from Ganoderma lucidum IBL-05 with improved dye decolorization and cytotoxicity reduction properties.
    Shaheen R; Asgher M; Hussain F; Bhatti HN
    Int J Biol Macromol; 2017 Oct; 103():57-64. PubMed ID: 28438681
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Removal of mercury (II) from aqueous solution using papain immobilized on alginate bead: optimization of immobilization condition and modeling of removal study.
    Bhattacharyya A; Dutta S; De P; Ray P; Basu S
    Bioresour Technol; 2010 Dec; 101(24):9421-8. PubMed ID: 20696575
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Immobilization of invertase in calcium alginate and calcium alginate-kappa-carrageenan beads and its application in bioethanol production.
    Malhotra I; Basir SF
    Prep Biochem Biotechnol; 2020; 50(5):494-503. PubMed ID: 31900037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.