BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 26454170)

  • 1. Artificial regulation of p53 function by modulating its assembly.
    Inobe T; Nozaki M; Nukina N
    Biochem Biophys Res Commun; 2015 Nov; 467(2):322-7. PubMed ID: 26454170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapamycin-induced oligomer formation system of FRB-FKBP fusion proteins.
    Inobe T; Nukina N
    J Biosci Bioeng; 2016 Jul; 122(1):40-6. PubMed ID: 26777239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folding of tetrameric p53: oligomerization and tumorigenic mutations induce misfolding and loss of function.
    Lubin DJ; Butler JS; Loh SN
    J Mol Biol; 2010 Jan; 395(4):705-16. PubMed ID: 19913028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of tumor suppressor protein p53-dependent transcription by a tetramerization domain peptide via hetero-oligomerization.
    Wada J; Kamada R; Imagawa T; Chuman Y; Sakaguchi K
    Bioorg Med Chem Lett; 2012 Apr; 22(8):2780-3. PubMed ID: 22429466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An engineered four-stranded coiled coil substitutes for the tetramerization domain of wild-type p53 and alleviates transdominant inhibition by tumor-derived p53 mutants.
    Waterman MJ; Waterman JL; Halazonetis TD
    Cancer Res; 1996 Jan; 56(1):158-63. PubMed ID: 8548757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tetramer formation of tumor suppressor protein p53: Structure, function, and applications.
    Kamada R; Toguchi Y; Nomura T; Imagawa T; Sakaguchi K
    Biopolymers; 2016 Nov; 106(4):598-612. PubMed ID: 26572807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation.
    Kamada R; Nomura T; Anderson CW; Sakaguchi K
    J Biol Chem; 2011 Jan; 286(1):252-8. PubMed ID: 20978130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PBK/TOPK interacts with the DBD domain of tumor suppressor p53 and modulates expression of transcriptional targets including p21.
    Hu F; Gartenhaus RB; Eichberg D; Liu Z; Fang HB; Rapoport AP
    Oncogene; 2010 Oct; 29(40):5464-74. PubMed ID: 20622899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The C-terminal regulatory domain of p53 contains a functional docking site for cyclin A.
    Luciani MG; Hutchins JR; Zheleva D; Hupp TR
    J Mol Biol; 2000 Jul; 300(3):503-18. PubMed ID: 10884347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Phage Display-Isolated Heptapeptide Recognizing the Regulatory Carboxy-Terminal Domain of Human Tumour Protein p53.
    Ben Abid S; Sahnoun M; Yacoubi-Hadj Amor I; Abdelmoula-Souissi S; Hassairi H; Mokdad-Gargouri R; Gargouri A
    Protein J; 2017 Oct; 36(5):443-452. PubMed ID: 28710679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the human p53 core domain in the absence of DNA.
    Wang Y; Rosengarth A; Luecke H
    Acta Crystallogr D Biol Crystallogr; 2007 Mar; 63(Pt 3):276-81. PubMed ID: 17327663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The p53 tetramer shows an induced-fit interaction of the C-terminal domain with the DNA-binding domain.
    D'Abramo M; Bešker N; Desideri A; Levine AJ; Melino G; Chillemi G
    Oncogene; 2016 Jun; 35(25):3272-81. PubMed ID: 26477317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro Determination of Rapamycin-triggered FKBP-FRB Interactions Using a Molecular Tension Probe.
    Kim SB; Nishihara R; Fujii R; Paulmurugan R; Citterio D; Suzuki K
    Anal Sci; 2019 Jan; 35(1):71-78. PubMed ID: 30504653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional interplay between p53 and E2F through co-activator p300.
    Lee CW; Sørensen TS; Shikama N; La Thangue NB
    Oncogene; 1998 May; 16(21):2695-710. PubMed ID: 9652736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of methionine residue at hydrophobic core destabilizes p53 tetrameric structure.
    Nomura T; Kamada R; Ito I; Chuman Y; Shimohigashi Y; Sakaguchi K
    Biopolymers; 2009 Jan; 91(1):78-84. PubMed ID: 18781628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between the HPV-16 E2 transcriptional activator and p53.
    Massimi P; Pim D; Bertoli C; Bouvard V; Banks L
    Oncogene; 1999 Dec; 18(54):7748-54. PubMed ID: 10618715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hetero-oligomerization does not compromise 'gain of function' of tumor-derived p53 mutants.
    Deb D; Scian M; Roth KE; Li W; Keiger J; Chakraborti AS; Deb SP; Deb S
    Oncogene; 2002 Jan; 21(2):176-89. PubMed ID: 11803461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53.
    Sakaguchi K; Sakamoto H; Lewis MS; Anderson CW; Erickson JW; Appella E; Xie D
    Biochemistry; 1997 Aug; 36(33):10117-24. PubMed ID: 9254608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of tetramerization in p53 function.
    Chène P
    Oncogene; 2001 May; 20(21):2611-7. PubMed ID: 11420672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VRK1 interacts with p53 forming a basal complex that is activated by UV-induced DNA damage.
    López-Sánchez I; Valbuena A; Vázquez-Cedeira M; Khadake J; Sanz-García M; Carrillo-Jiménez A; Lazo PA
    FEBS Lett; 2014 Mar; 588(5):692-700. PubMed ID: 24492002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.