BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 26454178)

  • 1. Genome-wide analysis of alternative splicing events in Hordeum vulgare: Highlighting retention of intron-based splicing and its possible function through network analysis.
    Panahi B; Mohammadi SA; Ebrahimi Khaksefidi R; Fallah Mehrabadi J; Ebrahimie E
    FEBS Lett; 2015 Nov; 589(23):3564-75. PubMed ID: 26454178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide analysis of alternative splicing in Volvox carteri.
    Kianianmomeni A; Ong CS; Rätsch G; Hallmann A
    BMC Genomics; 2014 Dec; 15():1117. PubMed ID: 25516378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional characterisation of an intron retaining K(+) transporter of barley reveals intron-mediated alternate splicing.
    Shahzad K; Rauf M; Ahmed M; Malik ZA; Habib I; Ahmed Z; Mahmood K; Ali R; Masmoudi K; Lemtiri-Chlieh F; Gehring C; Berkowitz GA; Saeed NA
    Plant Biol (Stuttg); 2015 Jul; 17(4):840-51. PubMed ID: 25631371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide survey of alternative splicing in the grass Brachypodium distachyon: a emerging model biosystem for plant functional genomics.
    Sablok G; Gupta PK; Baek JM; Vazquez F; Min XJ
    Biotechnol Lett; 2011 Mar; 33(3):629-36. PubMed ID: 21107652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole-genome microarray in Arabidopsis facilitates global analysis of retained introns.
    Ner-Gaon H; Fluhr R
    DNA Res; 2006 Jun; 13(3):111-21. PubMed ID: 16980712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide detection and analysis of alternative splicing for nucleotide binding site-leucine-rich repeats sequences in rice.
    Gu L; Guo R
    J Genet Genomics; 2007 Mar; 34(3):247-57. PubMed ID: 17498622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intron retention is a major phenomenon in alternative splicing in Arabidopsis.
    Ner-Gaon H; Halachmi R; Savaldi-Goldstein S; Rubin E; Ophir R; Fluhr R
    Plant J; 2004 Sep; 39(6):877-85. PubMed ID: 15341630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of alternative splicing events regulated by an Arabidopsis serine/arginine-like protein, atSR45a, in response to high-light stress using a tiling array.
    Yoshimura K; Mori T; Yokoyama K; Koike Y; Tanabe N; Sato N; Takahashi H; Maruta T; Shigeoka S
    Plant Cell Physiol; 2011 Oct; 52(10):1786-805. PubMed ID: 21862516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative splicing of the sheep MITF gene: novel transcripts detectable in skin.
    Saravanaperumal SA; Pediconi D; Renieri C; La Terza A
    Gene; 2014 Nov; 552(1):165-75. PubMed ID: 25239663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in cell wall polysaccharide composition, gene transcription and alternative splicing in germinating barley embryos.
    Zhang Q; Zhang X; Pettolino F; Zhou G; Li C
    J Plant Physiol; 2016 Feb; 191():127-39. PubMed ID: 26788957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative splicing regulates biogenesis of miRNAs located across exon-intron junctions.
    Melamed Z; Levy A; Ashwal-Fluss R; Lev-Maor G; Mekahel K; Atias N; Gilad S; Sharan R; Levy C; Kadener S; Ast G
    Mol Cell; 2013 Jun; 50(6):869-81. PubMed ID: 23747012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SKIP Confers Osmotic Tolerance during Salt Stress by Controlling Alternative Gene Splicing in Arabidopsis.
    Feng J; Li J; Gao Z; Lu Y; Yu J; Zheng Q; Yan S; Zhang W; He H; Ma L; Zhu Z
    Mol Plant; 2015 Jul; 8(7):1038-52. PubMed ID: 25617718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-Wide Analysis of Alternative Splicing Provides Insights into Stress Adaptation of the Pacific Oyster.
    Huang B; Zhang L; Tang X; Zhang G; Li L
    Mar Biotechnol (NY); 2016 Oct; 18(5):598-609. PubMed ID: 27771778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of splice donor and acceptor function in a novel Ac-based gene trap construct.
    Bergmann C; Lütticke S
    Planta; 2004 Sep; 219(5):876-83. PubMed ID: 15173944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating alternative splicing detection into gene prediction.
    Foissac S; Schiex T
    BMC Bioinformatics; 2005 Feb; 6():25. PubMed ID: 15705189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model system for evaluation of alternative splicing: exon skipping.
    Yuan ZA; Chen E; Gibson CW
    DNA Cell Biol; 2001 Dec; 20(12):807-13. PubMed ID: 11879574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-nucleotide resolution mapping of the Gossypium raimondii transcriptome reveals a new mechanism for alternative splicing of introns.
    Li Q; Xiao G; Zhu YX
    Mol Plant; 2014 May; 7(5):829-40. PubMed ID: 24398628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction and feature analysis of intron retention events in plant genome.
    Cui Y; Zhang C; Cai M
    Comput Biol Chem; 2017 Jun; 68():219-223. PubMed ID: 28419974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep RNA sequencing reveals a high frequency of alternative splicing events in the fungus Trichoderma longibrachiatum.
    Xie BB; Li D; Shi WL; Qin QL; Wang XW; Rong JC; Sun CY; Huang F; Zhang XY; Dong XW; Chen XL; Zhou BC; Zhang YZ; Song XY
    BMC Genomics; 2015 Feb; 16(1):54. PubMed ID: 25652134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of tau exon 10 splicing by a double stem-loop structure in mouse intron 10.
    Yamashita T; Tomiyama T; Li Q; Numata H; Mori H
    FEBS Lett; 2005 Jan; 579(1):241-4. PubMed ID: 15620720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.