These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 26454370)

  • 1. A novel AFG3L2 mutation in a Somalian patient with spinocerebellar ataxia type 28.
    Qu J; Wu CK; Zuzuárregui JR; Hohler AD
    J Neurol Sci; 2015 Nov; 358(1-2):530-1. PubMed ID: 26454370
    [No Abstract]   [Full Text] [Related]  

  • 2. Spinocerebellar Ataxia Type 28-Phenotypic and Molecular Characterization of a Family with Heterozygous and Compound-Heterozygous Mutations in AFG3L2.
    Tunc S; Dulovic-Mahlow M; Baumann H; Baaske MK; Jahn M; Junker J; Münchau A; Brüggemann N; Lohmann K
    Cerebellum; 2019 Aug; 18(4):817-822. PubMed ID: 31111429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurocognitive Characterization of an SCA28 Family Caused by a Novel AFG3L2 Gene Mutation.
    Szpisjak L; Nemeth VL; Szepfalusi N; Zadori D; Maroti Z; Kalmar T; Vecsei L; Klivenyi P
    Cerebellum; 2017 Dec; 16(5-6):979-985. PubMed ID: 28660440
    [No Abstract]   [Full Text] [Related]  

  • 4. Expanding the clinical and genetic heterogeneity of SPAX5.
    Dosi C; Galatolo D; Rubegni A; Doccini S; Pasquariello R; Nesti C; Sicca F; Barghigiani M; Battini R; Tessa A; Santorelli FM
    Ann Clin Transl Neurol; 2020 Apr; 7(4):595-601. PubMed ID: 32237276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mice harbouring a SCA28 patient mutation in AFG3L2 develop late-onset ataxia associated with enhanced mitochondrial proteotoxicity.
    Mancini C; Hoxha E; Iommarini L; Brussino A; Richter U; Montarolo F; Cagnoli C; Parolisi R; Gondor Morosini DI; Nicolò V; Maltecca F; Muratori L; Ronchi G; Geuna S; Arnaboldi F; Donetti E; Giorgio E; Cavalieri S; Di Gregorio E; Pozzi E; Ferrero M; Riberi E; Casari G; Altruda F; Turco E; Gasparre G; Battersby BJ; Porcelli AM; Ferrero E; Brusco A; Tempia F
    Neurobiol Dis; 2019 Apr; 124():14-28. PubMed ID: 30389403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel frameshift mutation in the AFG3L2 gene in a patient with spinocerebellar ataxia.
    Musova Z; Kaiserova M; Kriegova E; Fillerova R; Vasovcak P; Santava A; Mensikova K; Zumrova A; Krepelova A; Sedlacek Z; Kanovsky P
    Cerebellum; 2014 Jun; 13(3):331-7. PubMed ID: 24272953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel missense mutation in AFG3L2 associated with late onset and slow progression of spinocerebellar ataxia type 28.
    Löbbe AM; Kang JS; Hilker R; Hackstein H; Müller U; Nolte D
    J Mol Neurosci; 2014 Apr; 52(4):493-6. PubMed ID: 24293060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinocerebellar ataxia type 28 (SCA28) is an uncommon cause of dominant ataxia among Chinese kindreds.
    Jia D; Tang B; Chen Z; Shi Y; Sun Z; Zhang L; Wang J; Xia K; Jiang H
    Int J Neurosci; 2012 Oct; 122(10):560-2. PubMed ID: 22563911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanding the phenotype of AFG3L2 mutations: Late-onset autosomal recessive spinocerebellar ataxia.
    Chiang HL; Fuh JL; Tsai YS; Soong BW; Liao YC; Lee YC
    J Neurol Sci; 2021 Sep; 428():117600. PubMed ID: 34333379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinocerebellar ataxia type 28 in a Chinese pedigree: A case report and literature review.
    Liu X; Wang L; Chen J; Kang C; Li J
    Medicine (Baltimore); 2021 Dec; 100(50):e28008. PubMed ID: 34918652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases.
    Pierson TM; Adams D; Bonn F; Martinelli P; Cherukuri PF; Teer JK; Hansen NF; Cruz P; Mullikin For The Nisc Comparative Sequencing Program JC; Blakesley RW; Golas G; Kwan J; Sandler A; Fuentes Fajardo K; Markello T; Tifft C; Blackstone C; Rugarli EI; Langer T; Gahl WA; Toro C
    PLoS Genet; 2011 Oct; 7(10):e1002325. PubMed ID: 22022284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion of AFG3L2 associated with spinocerebellar ataxia type 28 in the context of multiple genomic anomalies.
    Myers KA; Warman Chardon J; Huang L; Boycott KM
    Am J Med Genet A; 2014 Dec; 164A(12):3209-12. PubMed ID: 25251419
    [No Abstract]   [Full Text] [Related]  

  • 13. Spastic ataxia with eye-of-the-tiger-like sign in 4 siblings due to novel compound heterozygous AFG3L2 mutation.
    Calandra CR; Buda G; Vishnopolska SA; Oliveri J; Olivieri FA; Pérez Millán MI; Biagioli G; Miquelini LA; Pellene AL; Marti MA
    Parkinsonism Relat Disord; 2020 Apr; 73():52-54. PubMed ID: 32248051
    [No Abstract]   [Full Text] [Related]  

  • 14. Early onset and slow progression of SCA28, a rare dominant ataxia in a large four-generation family with a novel AFG3L2 mutation.
    Edener U; Wöllner J; Hehr U; Kohl Z; Schilling S; Kreuz F; Bauer P; Bernard V; Gillessen-Kaesbach G; Zühlke C
    Eur J Hum Genet; 2010 Aug; 18(8):965-8. PubMed ID: 20354562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partial deletion of AFG3L2 causing spinocerebellar ataxia type 28.
    Smets K; Deconinck T; Baets J; Sieben A; Martin JJ; Smouts I; Wang S; Taroni F; Di Bella D; Van Hecke W; Parizel PM; Jadoul C; De Potter R; Couvreur F; Rugarli E; De Jonghe P
    Neurology; 2014 Jun; 82(23):2092-100. PubMed ID: 24814845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Haploinsufficiency of AFG3L2, the gene responsible for spinocerebellar ataxia type 28, causes mitochondria-mediated Purkinje cell dark degeneration.
    Maltecca F; Magnoni R; Cerri F; Cox GA; Quattrini A; Casari G
    J Neurosci; 2009 Jul; 29(29):9244-54. PubMed ID: 19625515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Missense mutations in the AFG3L2 proteolytic domain account for ∼1.5% of European autosomal dominant cerebellar ataxias.
    Cagnoli C; Stevanin G; Brussino A; Barberis M; Mancini C; Margolis RL; Holmes SE; Nobili M; Forlani S; Padovan S; Pappi P; Zaros C; Leber I; Ribai P; Pugliese L; Assalto C; Brice A; Migone N; Dürr A; Brusco A
    Hum Mutat; 2010 Oct; 31(10):1117-24. PubMed ID: 20725928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustained OMA1-mediated integrated stress response is beneficial for spastic ataxia type 5.
    Franchino CA; Brughera M; Baderna V; De Ritis D; Rocco A; Seneca S; Regal L; Podini P; D'Antonio M; Toro C; Quattrini A; Scalais E; Maltecca F
    Brain; 2024 Mar; 147(3):1043-1056. PubMed ID: 37804316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clonal expansion of secondary mitochondrial DNA deletions associated with spinocerebellar ataxia type 28.
    Gorman GS; Pfeffer G; Griffin H; Blakely EL; Kurzawa-Akanbi M; Gabriel J; Sitarz K; Roberts M; Schoser B; Pyle A; Schaefer AM; McFarland R; Turnbull DM; Horvath R; Chinnery PF; Taylor RW
    JAMA Neurol; 2015 Jan; 72(1):106-11. PubMed ID: 25420100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purkinje neuron Ca2+ influx reduction rescues ataxia in SCA28 model.
    Maltecca F; Baseggio E; Consolato F; Mazza D; Podini P; Young SM; Drago I; Bahr BA; Puliti A; Codazzi F; Quattrini A; Casari G
    J Clin Invest; 2015 Jan; 125(1):263-74. PubMed ID: 25485680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.