These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26454582)

  • 21. Formation of calcium-mediated junction zones at the onset of the sol-gel transition of commercial kappa-carrageenan solutions.
    Nickerson MT; Darvesh R; Paulson AT
    J Food Sci; 2010 Apr; 75(3):E153-6. PubMed ID: 20492288
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of polymer molecular weight and of polymer blends on the properties of rapidly gelling nasal inserts.
    Bertram U; Bodmeier R
    Drug Dev Ind Pharm; 2012 Jun; 38(6):659-69. PubMed ID: 22537309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mixed iota and kappa carrageenan gels in the presence of both calcium and potassium ions.
    Bui VTNT; Nguyen BT; Nicolai T; Renou F
    Carbohydr Polym; 2019 Nov; 223():115107. PubMed ID: 31426987
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in X-ray scattering: from solution SAXS to achievements with coherent beams.
    Pérez J; Nishino Y
    Curr Opin Struct Biol; 2012 Oct; 22(5):670-8. PubMed ID: 22954648
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In Situ Observations of Thermoreversible Gelation and Phase Separation of Agarose and Methylcellulose Solutions under High Pressure.
    Kometani N; Tanabe M; Su L; Yang K; Nishinari K
    J Phys Chem B; 2015 Jun; 119(22):6878-83. PubMed ID: 25984597
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sol-gel-derived biomaterials of silica and carrageenans.
    Shchipunov YA
    J Colloid Interface Sci; 2003 Dec; 268(1):68-76. PubMed ID: 14611774
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a Mucoadhesive and an in Situ Gelling Formulation Based on κ-Carrageenan for Application on Oral Mucosa and Esophagus Walls. II. Loading of a Bioactive Hydroalcoholic Extract.
    Vigani B; Rossi S; Gentile M; Sandri G; Bonferoni MC; Cavalloro V; Martino E; Collina S; Ferrari F
    Mar Drugs; 2019 Mar; 17(3):. PubMed ID: 30841540
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a Mucoadhesive and In Situ Gelling Formulation Based on κ-Carrageenan for Application on Oral Mucosa and Esophagus Walls. I. A Functional In Vitro Characterization.
    Vigani B; Faccendini A; Rossi S; Sandri G; Bonferoni MC; Gentile M; Ferrari F
    Mar Drugs; 2019 Feb; 17(2):. PubMed ID: 30759831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synergistic effects of mixed salt on the gelation of κ-carrageenan.
    Nguyen BT; Nicolai T; Benyahia L; Chassenieux C
    Carbohydr Polym; 2014 Nov; 112():10-5. PubMed ID: 25129710
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synergy of the kappa-carrageenan-carob galactomannan blend inferred from rheological studies.
    Turquois T; Doublier JL; Taravel FR; Rochas C
    Int J Biol Macromol; 1994 Apr; 16(2):105-7. PubMed ID: 8011587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular transforms of kappa carrageenan and furcellaran from mixed gel systems.
    Cairns P; Atkins ED; Miles MJ; Morris VJ
    Int J Biol Macromol; 1991 Apr; 13(2):65-8. PubMed ID: 1888712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of cyclodextrins on the gel properties of kappa-carrageenan.
    Yuan C; Sang L; Wang Y; Cui B
    Food Chem; 2018 Nov; 266():545-550. PubMed ID: 30381223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis and characterization of modified κ-carrageenan for enhanced proton conductivity as polymer electrolyte membrane.
    Liew JWY; Loh KS; Ahmad A; Lim KL; Wan Daud WR
    PLoS One; 2017; 12(9):e0185313. PubMed ID: 28957374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural characterization of proteins and complexes using small-angle X-ray solution scattering.
    Mertens HD; Svergun DI
    J Struct Biol; 2010 Oct; 172(1):128-41. PubMed ID: 20558299
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural Analysis of Polysaccharide Networks by Transmission Electron Microscopy: Comparison with Small-Angle X-ray Scattering.
    Hernandez-Cerdan P; Mansel BW; Leis A; Lundin L; Williams MAK
    Biomacromolecules; 2018 Mar; 19(3):989-995. PubMed ID: 29381344
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Applications of small-angle X-ray scattering to biomacromolecular solutions.
    Petoukhov MV; Svergun DI
    Int J Biochem Cell Biol; 2013 Feb; 45(2):429-37. PubMed ID: 23142499
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Primary, Secondary, Tertiary and Quaternary Structure Levels in Linear Polysaccharides: From Random Coil, to Single Helix to Supramolecular Assembly.
    Diener M; Adamcik J; Sánchez-Ferrer A; Jaedig F; Schefer L; Mezzenga R
    Biomacromolecules; 2019 Apr; 20(4):1731-1739. PubMed ID: 30816699
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kappa-carrageenan enhances the gelation and structural changes of egg yolk via electrostatic interactions with yolk protein.
    Huang M; Mao Y; Li H; Yang H
    Food Chem; 2021 Oct; 360():129972. PubMed ID: 33971508
    [TBL] [Abstract][Full Text] [Related]  

  • 39. X-ray scattering and molecular dynamics simulations reveal the secondary structure of κ-carrageenan in the solution state.
    Westberry BP; Mansel BW; Ryan TM; Lundin L; Williams MAK
    Carbohydr Polym; 2022 Nov; 296():119958. PubMed ID: 36088000
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interpenetrating network formation in agarose--kappa-carrageenan gel composites.
    Amici E; Clark AH; Normand V; Johnson NB
    Biomacromolecules; 2002; 3(3):466-74. PubMed ID: 12005516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.