BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 26454633)

  • 1. A new combined process for efficient removal of Cu(II) organic complexes from wastewater: Fe(III) displacement/UV degradation/alkaline precipitation.
    Xu Z; Gao G; Pan B; Zhang W; Lv L
    Water Res; 2015 Dec; 87():378-84. PubMed ID: 26454633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient removal of EDTA-complexed Cu(II) by a combined Fe(III)/UV/alkaline precipitation process: Performance and role of Fe(II).
    Shan C; Xu Z; Zhang X; Xu Y; Gao G; Pan B
    Chemosphere; 2018 Feb; 193():1235-1242. PubMed ID: 29153329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a combined Fe(III)/UV/NaOH process for efficient removal of carboxyl complexed Ni from synthetic and authentic effluents.
    Jiang Z; Ye Y; Zhang X; Pan B
    Chemosphere; 2019 Nov; 234():917-924. PubMed ID: 31519100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient removal of Cr(III)-organic complexes from water using UV/Fe(III) system: Negligible Cr(VI) accumulation and mechanism.
    Ye Y; Jiang Z; Xu Z; Zhang X; Wang D; Lv L; Pan B
    Water Res; 2017 Dec; 126():172-178. PubMed ID: 28946060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep purification of copper from Cu(II)-EDTA acidic wastewater by Fe(III) replacement/diethyldithiocarbamate precipitation.
    Han M; He J; Wei X; Li S; Zhang C; Zhang H; Sun W; Yue T
    Chemosphere; 2022 Aug; 300():134546. PubMed ID: 35405198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient removal of phosphonates from water by a combined Fe(III)/UV/co-precipitation process.
    Sun S; Wang S; Ye Y; Pan B
    Water Res; 2019 Apr; 153():21-28. PubMed ID: 30685633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sludge reduction and cost saving in removal of Cu(II)-EDTA from electroplating wastewater by introducing a low dose of acetylacetone into the Fe(III)/UV/NaOH process.
    Zhang L; Wu B; Gan Y; Chen Z; Zhang S
    J Hazard Mater; 2020 Jan; 382():121107. PubMed ID: 31493742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Fe(III) driven UV/Air process for enhanced recovery of heavy metals from EDTA complexed system.
    Yuan Y; Zhao W; Liu Z; Ling C; Zhu C; Liu F; Li A
    Water Res; 2020 Mar; 171():115375. PubMed ID: 31865128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decomplexation of Cr(III)-EDTA and simultaneous abatement of total Cr by photo-oxidation: efficiency and in situ reduction of intermediate Cr(VI).
    Huang X; Wang X; Guan DX; Zhou H; Bei K; Zheng X; Jin Z; Zhang Y; Wang Q; Zhao M
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8516-8524. PubMed ID: 30761490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic insight into pH-dependent adsorption and coprecipitation of chelated heavy metals by in-situ formed iron (oxy)hydroxides.
    Yang Z; Ma J; Liu F; Zhang H; Ma X; He D
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):864-872. PubMed ID: 34785461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient removal of Cu(II), Zn(II), Ni(II) and Fe(II) from electroplating wastewater using sulphide from sulphidogenic bioreactor effluent.
    Fang D; Zhang R; Deng W; Li J
    Environ Technol; 2012; 33(13-15):1709-15. PubMed ID: 22988632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of UV-irradiated Fe(III)-nitrilotriacetic acid (UV-Fe(III)NTA) and UV-NTA-Fenton systems to degrade model and natural occurring naphthenic acids.
    Zhang Y; Chelme-Ayala P; Klamerth N; Gamal El-Din M
    Chemosphere; 2017 Jul; 179():359-366. PubMed ID: 28388447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autocatalytic Decomplexation of Cu(II)-EDTA and Simultaneous Removal of Aqueous Cu(II) by UV/Chlorine.
    Huang X; Wang Y; Li X; Guan D; Li Y; Zheng X; Zhao M; Shan C; Pan B
    Environ Sci Technol; 2019 Feb; 53(4):2036-2044. PubMed ID: 30653306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Fe(III)-bicarboxylic complexes in removal pollutant under UV and sunlight in aqueous solutions.
    Seraghni N; Ghoul I; Dekkiche BA; Bouaziz C; Debbache N; Sehili T
    Environ Technol; 2022 Jul; 43(17):2612-2619. PubMed ID: 33583355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decomplexation efficiency and mechanism of Cu(II)-EDTA by H
    Zhou D; Hu Y; Guo Q; Yuan W; Deng J; Dang Y
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1015-1025. PubMed ID: 28035604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Fe(II)/citrate/UV/PMS process for carbamazepine degradation at a very low Fe(II)/PMS ratio and neutral pH: The mechanisms.
    Ling L; Zhang D; Fan C; Shang C
    Water Res; 2017 Nov; 124():446-453. PubMed ID: 28783498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coagulation characteristic and mechanism of Fe(III) salts toward typical Cr(III) complexes in wastewater treatment.
    Ye Y; Yang N; Xiao L; Li Q; Pan F; Xia D
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):30122-30129. PubMed ID: 36427131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel combined process for efficient removal of Se(VI) from sulfate-rich water: Sulfite/UV/Fe(III) coagulation.
    Wang X; Liu H; Shan C; Zhang W; Pan B
    Chemosphere; 2018 Nov; 211():867-874. PubMed ID: 30103142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic study of the degradation of rhodamine B using a flow-through UV/electro-Fenton process with the presence of ethylenediaminetetraacetic acid.
    Zhang Y; Luo G; Wang Q; Zhang Y; Zhou M
    Chemosphere; 2020 Feb; 240():124929. PubMed ID: 31561158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation mechanism of cyanide in water using a UV-LED/H
    Kim TK; Kim T; Jo A; Park S; Choi K; Zoh KD
    Chemosphere; 2018 Oct; 208():441-449. PubMed ID: 29886332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.