These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
548 related articles for article (PubMed ID: 26454691)
1. A beta-blocker, propranolol, decreases the efficacy from enzyme replacement therapy in Pompe disease. Han SO; Pope R; Li S; Kishnani PS; Steet R; Koeberl DD Mol Genet Metab; 2016 Feb; 117(2):114-9. PubMed ID: 26454691 [TBL] [Abstract][Full Text] [Related]
2. Synergistic Efficacy from Gene Therapy with Coreceptor Blockade and a β2-Agonist in Murine Pompe Disease. Han SO; Li S; Bird A; Koeberl D Hum Gene Ther; 2015 Nov; 26(11):743-50. PubMed ID: 26417913 [TBL] [Abstract][Full Text] [Related]
3. Antibody-mediated enzyme replacement therapy targeting both lysosomal and cytoplasmic glycogen in Pompe disease. Yi H; Sun T; Armstrong D; Borneman S; Yang C; Austin S; Kishnani PS; Sun B J Mol Med (Berl); 2017 May; 95(5):513-521. PubMed ID: 28154884 [TBL] [Abstract][Full Text] [Related]
4. β2 Agonists enhance the efficacy of simultaneous enzyme replacement therapy in murine Pompe disease. Koeberl DD; Li S; Dai J; Thurberg BL; Bali D; Kishnani PS Mol Genet Metab; 2012 Feb; 105(2):221-7. PubMed ID: 22154081 [TBL] [Abstract][Full Text] [Related]
5. Salmeterol enhances the cardiac response to gene therapy in Pompe disease. Han SO; Li S; Koeberl DD Mol Genet Metab; 2016 May; 118(1):35-40. PubMed ID: 27017193 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of antihypertensive drugs in combination with enzyme replacement therapy in mice with Pompe disease. Han SO; Haynes AC; Li S; Abraham DM; Kishnani PS; Steet R; Koeberl DD Mol Genet Metab; 2020 Feb; 129(2):73-79. PubMed ID: 31645300 [TBL] [Abstract][Full Text] [Related]
7. Aerobic training as an adjunctive therapy to enzyme replacement in Pompe disease. Nilsson MI; Samjoo IA; Hettinga BP; Koeberl DD; Zhang H; Hawke TJ; Nissar AA; Ali T; Brandt L; Ansari MU; Hazari H; Patel N; Amon J; Tarnopolsky MA Mol Genet Metab; 2012 Nov; 107(3):469-79. PubMed ID: 23041258 [TBL] [Abstract][Full Text] [Related]
8. Enhanced efficacy of enzyme replacement therapy in Pompe disease through mannose-6-phosphate receptor expression in skeletal muscle. Koeberl DD; Luo X; Sun B; McVie-Wylie A; Dai J; Li S; Banugaria SG; Chen YT; Bali DS Mol Genet Metab; 2011 Jun; 103(2):107-12. PubMed ID: 21397538 [TBL] [Abstract][Full Text] [Related]
9. Adjunctive β2-agonist treatment reduces glycogen independently of receptor-mediated acid α-glucosidase uptake in the limb muscles of mice with Pompe disease. Farah BL; Madden L; Li S; Nance S; Bird A; Bursac N; Yen PM; Young SP; Koeberl DD FASEB J; 2014 May; 28(5):2272-80. PubMed ID: 24448824 [TBL] [Abstract][Full Text] [Related]
10. Improved efficacy of a next-generation ERT in murine Pompe disease. Xu S; Lun Y; Frascella M; Garcia A; Soska R; Nair A; Ponery AS; Schilling A; Feng J; Tuske S; Valle MCD; Martina JA; Ralston E; Gotschall R; Valenzano KJ; Puertollano R; Do HV; Raben N; Khanna R JCI Insight; 2019 Mar; 4(5):. PubMed ID: 30843882 [TBL] [Abstract][Full Text] [Related]
11. Reveglucosidase alfa (BMN 701), an IGF2-Tagged rhAcid α-Glucosidase, Improves Respiratory Functional Parameters in a Murine Model of Pompe Disease. Peng J; Dalton J; Butt M; Tracy K; Kennedy D; Haroldsen P; Cahayag R; Zoog S; O'Neill CA; Tsuruda LS J Pharmacol Exp Ther; 2017 Feb; 360(2):313-323. PubMed ID: 27856936 [TBL] [Abstract][Full Text] [Related]
12. Carbohydrate-remodelled acid alpha-glucosidase with higher affinity for the cation-independent mannose 6-phosphate receptor demonstrates improved delivery to muscles of Pompe mice. Zhu Y; Li X; McVie-Wylie A; Jiang C; Thurberg BL; Raben N; Mattaliano RJ; Cheng SH Biochem J; 2005 Aug; 389(Pt 3):619-28. PubMed ID: 15839836 [TBL] [Abstract][Full Text] [Related]
13. Hyaluronidase increases the biodistribution of acid alpha-1,4 glucosidase in the muscle of Pompe disease mice: an approach to enhance the efficacy of enzyme replacement therapy. Matalon R; Surendran S; Campbell GA; Michals-Matalon K; Tyring SK; Grady J; Cheng S; Kaye E Biochem Biophys Res Commun; 2006 Nov; 350(3):783-7. PubMed ID: 17027913 [TBL] [Abstract][Full Text] [Related]
14. Moss-Derived Human Recombinant GAA Provides an Optimized Enzyme Uptake in Differentiated Human Muscle Cells of Pompe Disease. Hintze S; Limmer S; Dabrowska-Schlepp P; Berg B; Krieghoff N; Busch A; Schaaf A; Meinke P; Schoser B Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32290314 [TBL] [Abstract][Full Text] [Related]
15. The pharmacological chaperone AT2220 increases recombinant human acid α-glucosidase uptake and glycogen reduction in a mouse model of Pompe disease. Khanna R; Flanagan JJ; Feng J; Soska R; Frascella M; Pellegrino LJ; Lun Y; Guillen D; Lockhart DJ; Valenzano KJ PLoS One; 2012; 7(7):e40776. PubMed ID: 22815812 [TBL] [Abstract][Full Text] [Related]
16. Quantitative computed tomography for enzyme replacement therapy in Pompe disease. Yonee C; Toyoshima M; Young SP; Maruyama S; Higuchi I; Narita A; Maegaki Y; Nanba E; Ohno K; Kawano Y Brain Dev; 2012 Nov; 34(10):834-9. PubMed ID: 22521436 [TBL] [Abstract][Full Text] [Related]
17. A new assay for fast, reliable CRIM status determination in infantile-onset Pompe disease. Wang Z; Okamoto P; Keutzer J Mol Genet Metab; 2014 Feb; 111(2):92-100. PubMed ID: 24044919 [TBL] [Abstract][Full Text] [Related]
18. Oral delivery of Acid Alpha Glucosidase epitopes expressed in plant chloroplasts suppresses antibody formation in treatment of Pompe mice. Su J; Sherman A; Doerfler PA; Byrne BJ; Herzog RW; Daniell H Plant Biotechnol J; 2015 Oct; 13(8):1023-32. PubMed ID: 26053072 [TBL] [Abstract][Full Text] [Related]
19. Efficient therapy for refractory Pompe disease by mannose 6-phosphate analogue grafting on acid α-glucosidase. Basile I; Da Silva A; El Cheikh K; Godefroy A; Daurat M; Harmois A; Perez M; Caillaud C; Charbonné HV; Pau B; Gary-Bobo M; Morère A; Garcia M; Maynadier M J Control Release; 2018 Jan; 269():15-23. PubMed ID: 29108866 [TBL] [Abstract][Full Text] [Related]