BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26454712)

  • 1. Effect of viscosity on the wave propagation: Experimental determination of compression and expansion pulse wave velocity in fluid-fill elastic tube.
    Stojadinović B; Tenne T; Zikich D; Rajković N; Milošević N; Lazović B; Žikić D
    J Biomech; 2015 Nov; 48(15):3969-3974. PubMed ID: 26454712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysical modeling of wave propagation phenomena: experimental determination of pulse wave velocity in viscous fluid-filled elastic tubes in a gravitation field.
    Žikić D; Stojadinović B; Nestorović Z
    Eur Biophys J; 2019 Jul; 48(5):407-411. PubMed ID: 31201474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wave propagation through a viscous fluid-filled elastic tube under initial pressure: theoretical and biophysical model.
    Žikić D; Žikić K
    Eur Biophys J; 2022 Jul; 51(4-5):365-374. PubMed ID: 35618857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear and nonlinear one-dimensional models of pulse wave transmission at high Womersley numbers.
    Reuderink PJ; Hoogstraten HW; Sipkema P; Hillen B; Westerhof N
    J Biomech; 1989; 22(8-9):819-27. PubMed ID: 2613717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wave propagation through a viscous fluid contained in a tethered, initially stresses, orthotropic elastic tube.
    Atabek HB
    Biophys J; 1968 May; 8(5):626-49. PubMed ID: 5699800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental study on the pressure and pulse wave propagation in viscoelastic vessel tubes-effects of liquid viscosity and tube stiffness.
    Ikenaga Y; Nishi S; Komagata Y; Saito M; Lagrée PY; Asada T; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2381-8. PubMed ID: 24158293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood characteristics effect on pulse wave velocity.
    Kim JY; Yoon J; Cho M; Lee BK; Karimi A; Shin S
    Clin Hemorheol Microcirc; 2013; 55(1):193-203. PubMed ID: 23445636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluid friction and wall viscosity of the 1D blood flow model.
    Wang XF; Nishi S; Matsukawa M; Ghigo A; Lagrée PY; Fullana JM
    J Biomech; 2016 Feb; 49(4):565-71. PubMed ID: 26862041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A physics based approach to the pulse wave velocity prediction in compliant arterial segments.
    Liberson AS; Lillie JS; Day SW; Borkholder DA
    J Biomech; 2016 Oct; 49(14):3460-3466. PubMed ID: 27665351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical evaluation of blood viscosity affecting pulse wave propagation in a fluid-structure interaction model.
    He F; Hua L; Gao LJ
    Biomed Tech (Berl); 2015 Feb; 60(1):11-5. PubMed ID: 25720033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wave propagation through a newtonian fluid contained within a thick-walled, viscoelastic tube.
    Ox RH
    Biophys J; 1968 Jun; 8(6):691-709. PubMed ID: 5699803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulse Wave Velocity Prediction and Compliance Assessment in Elastic Arterial Segments.
    Lillie JS; Liberson AS; Mix D; Schwarz KQ; Chandra A; Phillips DB; Day SW; Borkholder DA
    Cardiovasc Eng Technol; 2015 Mar; 6(1):49-58. PubMed ID: 26577102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results.
    Saito M; Ikenaga Y; Matsukawa M; Watanabe Y; Asada T; Lagrée PY
    J Biomech Eng; 2011 Dec; 133(12):121005. PubMed ID: 22206422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulse wave velocity as a diagnostic index: the pitfalls of tethering versus stiffening of the arterial wall.
    Hodis S; Zamir M
    J Biomech; 2011 Apr; 44(7):1367-73. PubMed ID: 21334629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wave propagation in a viscous fluid contained in an orthotropic elastic tube.
    Mirsky I
    Biophys J; 1967 Mar; 7(2):165-86. PubMed ID: 6048869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial velocity distributions in pulse-wave propagation based on fluid-structure interaction.
    He F; Hua L; Gao LJ
    J Biol Phys; 2014 Sep; 40(4):325-34. PubMed ID: 24935118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The compression and expansion waves of the forward and backward flows: an in-vitro arterial model.
    Feng J; Khir AW
    Proc Inst Mech Eng H; 2008 May; 222(4):531-42. PubMed ID: 18595362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New method for estimating arterial pulse wave velocity at single site.
    Abdessalem KB; Flaud P; Zobaidi S
    Comput Methods Biomech Biomed Engin; 2018 Jan; 21(1):55-64. PubMed ID: 29334240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical analysis of pressure pulse propagation in arterial vessels.
    Belardinelli E; Cavalcanti S
    J Biomech; 1992 Nov; 25(11):1337-49. PubMed ID: 1400535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulse wave reflections from arterial discontinuities.
    Laogun AA
    Afr J Med Med Sci; 1982 Jun; 11(2):87-94. PubMed ID: 6301248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.