These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26455206)

  • 1. [APPLICATION OF THREE DIMENSIONAL PRINTING ON MANUFACTURING BIONIC SCAFFOLDS OF SPINAL CORD IN RATS].
    Chen Y; Wang J; Chen X; Chen C; Tu Y; Zhang S; Li X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Mar; 29(3):364-7. PubMed ID: 26455206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [PREPARATION OF BIONIC COLLAGEN-HEPARIN SULFATE SPINAL CORD SCAFFOLD WITH THREE-DIMENSIONAL PRINT TECHNOLOGY].
    Zhang R; Tu Y; Zhao M; Chen C; Liang Haiqian ; Wang J; Zhang S; Li X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Aug; 29(8):1022-7. PubMed ID: 26677627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats.
    Chen C; Zhao ML; Zhang RK; Lu G; Zhao CY; Fu F; Sun HT; Zhang S; Tu Y; Li XH
    J Biomed Mater Res A; 2017 May; 105(5):1324-1332. PubMed ID: 28120511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats.
    Liu J; Chen J; Liu B; Yang C; Xie D; Zheng X; Xu S; Chen T; Wang L; Zhang Z; Bai X; Jin D
    J Neurol Sci; 2013 Feb; 325(1-2):127-36. PubMed ID: 23317924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunomodulatory and angiogenic responses induced by graphene oxide scaffolds in chronic spinal hemisected rats.
    López-Dolado E; González-Mayorga A; Gutiérrez MC; Serrano MC
    Biomaterials; 2016 Aug; 99():72-81. PubMed ID: 27214651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reparative response to cross-linked collagen-based scaffolds in a rat spinal cord gap model.
    Cholas RH; Hsu HP; Spector M
    Biomaterials; 2012 Mar; 33(7):2050-9. PubMed ID: 22182744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multichannel silk protein/laminin grafts for spinal cord injury repair.
    Zhang Q; Yan S; You R; Kaplan DL; Liu Y; Qu J; Li X; Li M; Wang X
    J Biomed Mater Res A; 2016 Dec; 104(12):3045-3057. PubMed ID: 27474892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES].
    Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D bioprinting applications in neural tissue engineering for spinal cord injury repair.
    Bedir T; Ulag S; Ustundag CB; Gunduz O
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110741. PubMed ID: 32204049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Experimental study on bone marrow mesenchymal stem cells seeded in chitosan-alginate scaffolds for repairing spinal cord injury].
    Wang D; Wen Y; Lan X; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Feb; 24(2):190-6. PubMed ID: 20187451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone marrow mesenchymal stem cells in a three-dimensional gelatin sponge scaffold attenuate inflammation, promote angiogenesis, and reduce cavity formation in experimental spinal cord injury.
    Zeng X; Zeng YS; Ma YH; Lu LY; Du BL; Zhang W; Li Y; Chan WY
    Cell Transplant; 2011; 20(11-12):1881-99. PubMed ID: 21396163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Matching mechanical heterogeneity of the native spinal cord augments axon infiltration in 3D-printed scaffolds.
    Tran KA; DeOre BJ; Ikejiani D; Means K; Paone LS; De Marchi L; Suprewicz Ł; Koziol K; Bouyer J; Byfield FJ; Jin Y; Georges P; Fischer I; Janmey PA; Galie PA
    Biomaterials; 2023 Apr; 295():122061. PubMed ID: 36842339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [PREPARATION OF PERSONALIZED BRAIN CAVITY SCAFFOLD WITH THREE-DIMENSIONAL PRINTING TECHNOLOGY BASED ON MAGNETIC RESONANCE IMAGING].
    Fu F; Zhao M; Li X; Chen C; Wang L; Sun H; Tu Y; Zhang S
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Nov; 30(11):1425-1430. PubMed ID: 29786402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic 3D-printed scaffolds for spinal cord injury repair.
    Koffler J; Zhu W; Qu X; Platoshyn O; Dulin JN; Brock J; Graham L; Lu P; Sakamoto J; Marsala M; Chen S; Tuszynski MH
    Nat Med; 2019 Feb; 25(2):263-269. PubMed ID: 30643285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dense fibroadhesive scarring and poor blood vessel-maturation hamper the integration of implanted collagen scaffolds in an experimental model of spinal cord injury.
    Altinova H; Hammes S; Palm M; Achenbach P; Gerardo-Nava J; Deumens R; Führmann T; van Neerven SGA; Hermans E; Weis J; Brook GA
    Biomed Mater; 2020 Feb; 15(1):015012. PubMed ID: 31796648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Promotion of spinal cord axon regeneration by 3D nanofibrous core-sheath scaffolds.
    Zamani F; Amani-Tehran M; Latifi M; Shokrgozar MA; Zaminy A
    J Biomed Mater Res A; 2014 Feb; 102(2):506-13. PubMed ID: 23533050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macro-architectures in spinal cord scaffold implants influence regeneration.
    Wong DY; Leveque JC; Brumblay H; Krebsbach PH; Hollister SJ; Lamarca F
    J Neurotrauma; 2008 Aug; 25(8):1027-37. PubMed ID: 18721107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The spatial arrangement of cells in a 3D-printed biomimetic spinal cord promotes directional differentiation and repairs the motor function after spinal cord injury.
    Wang J; Kong X; Li Q; Li C; Yu H; Ning G; Xiang Z; Liu Y; Feng S
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34139682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of gelatin sponge scaffolds and PLGA scaffolds transplanted to completely transected spinal cord of rat.
    Du BL; Zeng CG; Zhang W; Quan DP; Ling EA; Zeng YS
    J Biomed Mater Res A; 2014 Jun; 102(6):1715-25. PubMed ID: 23776140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and characterization of a PHB-HV-based 3D scaffold for a tissue engineering and cell-therapy combinatorial approach for spinal cord injury regeneration.
    Ribeiro-Samy S; Silva NA; Correlo VM; Fraga JS; Pinto L; Teixeira-Castro A; Leite-Almeida H; Almeida A; Gimble JM; Sousa N; Salgado AJ; Reis RL
    Macromol Biosci; 2013 Nov; 13(11):1576-92. PubMed ID: 24038969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.