These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 26455366)

  • 1. Prediction Enhancement of Residue Real-Value Relative Accessible Surface Area in Transmembrane Helical Proteins by Solving the Output Preference Problem of Machine Learning-Based Predictors.
    Xiao F; Shen HB
    J Chem Inf Model; 2015 Nov; 55(11):2464-74. PubMed ID: 26455366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MemBrain: An Easy-to-Use Online Webserver for Transmembrane Protein Structure Prediction.
    Yin X; Yang J; Xiao F; Yang Y; Shen HB
    Nanomicro Lett; 2018; 10(1):2. PubMed ID: 30393651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topology Prediction Improvement of α-helical Transmembrane Proteins Through Helix-tail Modeling and Multiscale Deep Learning Fusion.
    Feng SH; Zhang WX; Yang J; Yang Y; Shen HB
    J Mol Biol; 2020 Feb; 432(4):1279-1296. PubMed ID: 31870850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the Prediction of Transmembrane β-Barrel Segments with Chain Learning and Feature Sparse Representation.
    Yin X; Xu YY; Shen HB
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(6):1016-1026. PubMed ID: 26887010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MemBrain-contact 2.0: a new two-stage machine learning model for the prediction enhancement of transmembrane protein residue contacts in the full chain.
    Yang J; Shen HB
    Bioinformatics; 2018 Jan; 34(2):230-238. PubMed ID: 28968641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-accuracy prediction of transmembrane inter-helix contacts and application to GPCR 3D structure modeling.
    Yang J; Jang R; Zhang Y; Shen HB
    Bioinformatics; 2013 Oct; 29(20):2579-87. PubMed ID: 23946502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MemBrain: improving the accuracy of predicting transmembrane helices.
    Shen H; Chou JJ
    PLoS One; 2008 Jun; 3(6):e2399. PubMed ID: 18545655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced recognition of protein transmembrane domains with prediction-based structural profiles.
    Cao B; Porollo A; Adamczak R; Jarrell M; Meller J
    Bioinformatics; 2006 Feb; 22(3):303-9. PubMed ID: 16293670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid exposure prediction enhances the inference of rotational angles of transmembrane helices.
    Lai JS; Cheng CW; Lo A; Sung TY; Hsu WL
    BMC Bioinformatics; 2013 Oct; 14():304. PubMed ID: 24112406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constructing query-driven dynamic machine learning model with application to protein-ligand binding sites prediction.
    Yu DJ; Hu J; Li QM; Tang ZM; Yang JY; Shen HB
    IEEE Trans Nanobioscience; 2015 Jan; 14(1):45-58. PubMed ID: 25730499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. kPROT: a knowledge-based scale for the propensity of residue orientation in transmembrane segments. Application to membrane protein structure prediction.
    Pilpel Y; Ben-Tal N; Lancet D
    J Mol Biol; 1999 Dec; 294(4):921-35. PubMed ID: 10588897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sann: solvent accessibility prediction of proteins by nearest neighbor method.
    Joo K; Lee SJ; Lee J
    Proteins; 2012 Jul; 80(7):1791-7. PubMed ID: 22434533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing membrane protein subcellular localization prediction by parallel fusion of multi-view features.
    Yu D; Wu X; Shen H; Yang J; Tang Z; Qi Y; Yang J
    IEEE Trans Nanobioscience; 2012 Dec; 11(4):375-85. PubMed ID: 22875262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SOMPNN: an efficient non-parametric model for predicting transmembrane helices.
    Yu DJ; Shen HB; Yang JY
    Amino Acids; 2012 Jun; 42(6):2195-205. PubMed ID: 21695537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features.
    Zhou H; Yang Y; Shen HB
    Bioinformatics; 2017 Mar; 33(6):843-853. PubMed ID: 27993784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate prediction of solvent accessibility using neural networks-based regression.
    Adamczak R; Porollo A; Meller J
    Proteins; 2004 Sep; 56(4):753-67. PubMed ID: 15281128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning.
    Heffernan R; Paliwal K; Lyons J; Dehzangi A; Sharma A; Wang J; Sattar A; Yang Y; Zhou Y
    Sci Rep; 2015 Jun; 5():11476. PubMed ID: 26098304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNABind: a hybrid algorithm for structure-based prediction of DNA-binding residues by combining machine learning- and template-based approaches.
    Liu R; Hu J
    Proteins; 2013 Nov; 81(11):1885-99. PubMed ID: 23737141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hydrophobic spine stabilizes a surface-exposed α-helix according to analysis of the solvent-accessible surface area.
    Liou YF; Huang HL; Ho SY
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):503. PubMed ID: 28155647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear regression models for solvent accessibility prediction in proteins.
    Wagner M; Adamczak R; Porollo A; Meller J
    J Comput Biol; 2005 Apr; 12(3):355-69. PubMed ID: 15857247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.